Browse Source

去掉部分警告

master
zhaohe 2 years ago
parent
commit
ec71bb38f5
  1. 4
      .settings/language.settings.xml
  2. 2
      sdk
  3. 372
      usrc/feite_servo_motor.cpp
  4. 210
      usrc/feite_servo_motor.hpp

4
.settings/language.settings.xml

@ -5,7 +5,7 @@
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" console="false" env-hash="-622244553529563973" id="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="MCU ARM GCC Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<provider class="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" console="false" env-hash="1057391452571803630" id="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="MCU ARM GCC Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>
@ -16,7 +16,7 @@
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" console="false" env-hash="-622244553529563973" id="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="MCU ARM GCC Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<provider class="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" console="false" env-hash="1057391452571803630" id="com.st.stm32cube.ide.mcu.toolchain.armnone.setup.CrossBuiltinSpecsDetector" keep-relative-paths="false" name="MCU ARM GCC Built-in Compiler Settings" parameter="${COMMAND} ${FLAGS} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>

2
sdk

@ -1 +1 @@
Subproject commit 2b35686d8d692c80c80bdbb6b7e4afa38d94f860
Subproject commit d69f8551a6307b256cb2917312e57e2949953db1

372
usrc/feite_servo_motor.cpp

@ -1,372 +0,0 @@
#include "feite_servo_motor.hpp"
#include <stdint.h>
#include <string.h>
// #include "board.h"
// #include "port.h"
using namespace iflytop;
using namespace std;
using namespace feite;
#define TAG "FeiTeServoMotor"
#define OVERTIME 30
#define DO(func) \
if (!(func)) { \
ZLOGE(TAG, "motor[%d] do %s fail", id, #func); \
return false; \
}
static void dumphex(const char* tag, uint8_t* data, uint8_t len) {
#if 1
printf("%s:", tag);
for (int i = 0; i < len; i++) {
printf("%02x ", data[i]);
}
printf("\n");
#endif
}
void FeiTeServoMotor::initialize(UART_HandleTypeDef* uart, DMA_HandleTypeDef* hdma_rx, DMA_HandleTypeDef* hdma_tx) {
m_uart = uart;
m_hdma_rx = hdma_rx;
m_hdma_tx = hdma_tx;
}
bool FeiTeServoMotor::ping(uint8_t id) {
ping_cmd_t ping_cmd;
ping_resp_t ping_resp;
ping_cmd.header = 0xffff;
ping_cmd.id = id;
ping_cmd.len = 2;
ping_cmd.cmd = kping;
ping_cmd.checksum = checksum_packet((uint8_t*)&ping_cmd, sizeof(ping_cmd_t));
return tx_and_rx((uint8_t*)&ping_cmd, sizeof(ping_cmd_t), (uint8_t*)&ping_resp, sizeof(ping_resp_t), OVERTIME);
}
static int16_t getcalibrate(int16_t nowpos, int16_t aftercalibratepos) {
int16_t calibrate = nowpos - aftercalibratepos;
while (true) {
if (calibrate > 2047) {
calibrate -= 4094;
} else if (calibrate < -2047) {
calibrate += 4094;
} else {
break;
}
}
return calibrate;
}
bool FeiTeServoMotor::setmode(uint8_t id, run_mode_e runmode) { return write_u8(id, kRegServoRunMode, (uint8_t)runmode); }
bool FeiTeServoMotor::getServoCalibration(uint8_t id, int16_t& poscalibration) { return read_s16(id, kRegServoCalibration, 11, poscalibration); }
run_mode_e FeiTeServoMotor::getmode(uint8_t id) {
uint8_t data = 0;
bool suc = read_u8(id, kRegServoRunMode, data);
if (suc) {
return (run_mode_e)data;
} else {
return kMotorMode;
}
}
bool FeiTeServoMotor::getmode(uint8_t id, run_mode_e& runmode) {
uint8_t data = 0;
bool suc = read_u8(id, kRegServoRunMode, data);
runmode = (run_mode_e)data;
return suc;
}
bool FeiTeServoMotor::setTorqueSwitch(uint8_t id, bool on) { return write_u8(id, kRegServoTorqueSwitch, on ? 1 : 0); }
bool FeiTeServoMotor::getTorqueSwitch(uint8_t id, bool& on) {
uint8_t data = 0;
bool suc = read_u8(id, kRegServoTorqueSwitch, data);
on = data;
return suc;
}
bool FeiTeServoMotor::getNowPos(uint8_t id, int16_t& pos) { return read_s16(id, kRegServoCurrentPos, 15, pos); }
bool FeiTeServoMotor::setTargetPos(uint8_t id, int16_t pos) { return write_s16(id, kRegServoTargetPos, 15, pos); }
bool FeiTeServoMotor::triggerAysncWrite(uint8_t id) {
cmd_header_t* cmd_header = (cmd_header_t*)m_txbuf;
cmd_header->header = 0xffff;
cmd_header->id = id;
cmd_header->len = 2;
cmd_header->cmd = 5;
cmd_header->data[0] = checksum((uint8_t*)cmd_header, sizeof(cmd_header_t) + 1);
// HAL_UART_Transmit(m_uart, m_txbuf, sizeof(cmd_header_t) + 1, 1000);
return true;
}
bool FeiTeServoMotor::rotate(uint8_t id, int16_t speed, uint16_t torque) {
DO(setmode(id, kMotorMode));
if (torque == 0) torque = 1000;
DO(write_u16(id, kRegServoTorqueLimit, torque));
DO(write_s16(id, kRegServoRunSpeed, 15, speed));
return true;
}
bool FeiTeServoMotor::moveTo(uint8_t id, int16_t pos, int16_t speed, uint16_t torque) {
/**
* @brief
*/
DO(setmode(id, kServoMode));
if (torque == 0) torque = 1000;
DO(write_u16(id, kRegServoTorqueLimit, torque));
DO(write_s16(id, kRegServoRunSpeed, 15, speed));
DO(setTargetPos(id, pos));
return true;
}
uint16_t abs16(int16_t val) {
if (val < 0) {
return -val;
} else {
return val;
}
}
bool FeiTeServoMotor::moveWithTorque(uint8_t id, int16_t torque) {
DO(setmode(id, kOpenMotorMode));
if (torque == 0) torque = 1000;
DO(write_u16(id, kRegServoTorqueLimit, abs16(torque)));
DO(write_s16(id, kRegServoRunTime, 15, torque));
return true;
}
static int16_t tosign16(uint16_t* d, int signoff) {
uint16_t sign = (*d >> signoff) & 0x01;
uint16_t val = *d & (~(1 << signoff));
if (sign == 0) {
return val;
} else {
return -val;
}
}
bool FeiTeServoMotor::read_status(uint8_t id, status_t* status) {
// kRegServoCurrentPos
bool suc = read_reg(id, kRegServoCurrentPos, (uint8_t*)status, sizeof(status_t));
status->vel = tosign16((uint16_t*)&status->vel, 15);
if (!suc) return false;
return true;
}
bool FeiTeServoMotor::read_detailed_status(uint8_t id, detailed_status_t* detailed_status) {
bool suc = read_reg(id, kRegServoCurrentPos, (uint8_t*)detailed_status, sizeof(*detailed_status));
if (!suc) return false;
detailed_status->vel = tosign16((uint16_t*)&detailed_status->vel, 15);
detailed_status->torque = tosign16((uint16_t*)&detailed_status->torque, 10);
return true;
}
void FeiTeServoMotor::dump_status(status_t* status) {
ZLOGI(TAG, "===========status===========");
ZLOGI(TAG, "= status->pos :%d", status->pos);
ZLOGI(TAG, "= status->vel :%d", status->vel);
ZLOGI(TAG, "= status->torque :%d", status->torque);
ZLOGI(TAG, "=");
}
#define BIT_IN_BYTE(byte, off) ((byte >> off) & 0x01)
void FeiTeServoMotor::dump_detailed_status(detailed_status_t* detailed_status) {
ZLOGI(TAG, "===========detailed_status===========");
ZLOGI(TAG, "= detailed_status->pos :%d", detailed_status->pos);
ZLOGI(TAG, "= detailed_status->vel :%d", detailed_status->vel);
ZLOGI(TAG, "= detailed_status->torque :%d", detailed_status->torque);
ZLOGI(TAG, "= detailed_status->voltage :%d", detailed_status->voltage);
ZLOGI(TAG, "= detailed_status->temperature:%d", detailed_status->temperature);
ZLOGI(TAG, "= detailed_status->state :%d:%d:%d:%d:%d:%d", BIT_IN_BYTE(detailed_status->state, 0), BIT_IN_BYTE(detailed_status->state, 1), BIT_IN_BYTE(detailed_status->state, 2),
BIT_IN_BYTE(detailed_status->state, 3), BIT_IN_BYTE(detailed_status->state, 4), BIT_IN_BYTE(detailed_status->state, 5));
ZLOGI(TAG, "= detailed_status->moveflag :%d", detailed_status->moveflag);
ZLOGI(TAG, "= detailed_status->current :%d", detailed_status->current);
ZLOGI(TAG, "=");
}
bool FeiTeServoMotor::getMoveFlag(uint8_t id, uint8_t& moveflag) { return read_u8(id, kRegServoMoveFlag, moveflag); }
bool FeiTeServoMotor::reCalibration(int id, int16_t pos) {
if (pos < 0 || pos > 4095) {
ZLOGE(TAG, "reCalibration pos:%d out of range", pos);
return false;
}
/**
* @brief
*/
setTorqueSwitch(id, false);
/**
* @brief
*/
DO(setmode(id, kServoMode));
int16_t curpos;
DO(getNowPos(id, curpos));
int16_t curcalibrate;
DO(getServoCalibration(id, curcalibrate));
int16_t realpos = curpos + curcalibrate;
int16_t newcalibrate = getcalibrate(realpos, pos);
ZLOGI(TAG, "reCalibration id:%d curpos:%d curcalibrate:%d realpos:%d newcalibrate:%d", id, curpos, curcalibrate, realpos, newcalibrate);
/**
* @brief
*/
DO(write_u8(id, kRegServoLockFlag, 0));
DO(write_s16(id, kRegServoCalibration, 11, newcalibrate));
DO(write_u8(id, kRegServoLockFlag, 1));
/**
* @brief
*/
int16_t nowpos;
DO(getNowPos(id, nowpos));
ZLOGI(TAG, "reCalibration id:%d nowpos:%d:%d", id, nowpos, pos);
DO(setTargetPos(id, pos));
return true;
}
/*******************************************************************************
* BASEFUNC *
*******************************************************************************/
bool FeiTeServoMotor::write_u8(uint8_t id, feite::reg_add_e add, uint8_t regval) { return write_reg(id, false, add, &regval, 1); }
bool FeiTeServoMotor::read_u8(uint8_t id, feite::reg_add_e add, uint8_t& regval) { return read_reg(id, add, &regval, 1); }
bool FeiTeServoMotor::write_u16(uint8_t id, feite::reg_add_e add, uint16_t regval) { return write_reg(id, false, add, (uint8_t*)&regval, 2); }
bool FeiTeServoMotor::read_u16(uint8_t id, feite::reg_add_e add, uint16_t& regval) { return read_reg(id, add, (uint8_t*)&regval, 2); }
bool FeiTeServoMotor::async_write_u8(uint8_t id, feite::reg_add_e add, uint8_t regval) { return write_reg(id, true, add, &regval, 1); }
bool FeiTeServoMotor::async_write_u16(uint8_t id, feite::reg_add_e add, uint16_t regval) { return write_reg(id, true, add, (uint8_t*)&regval, 2); }
bool FeiTeServoMotor::async_write_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t regval) {
uint16_t val = 0;
if (regval >= 0) {
val = regval;
} else {
val = -regval;
val |= (1 << signbitoff);
}
return async_write_u16(id, add, val);
}
bool FeiTeServoMotor::read_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t& regval) {
uint16_t val = 0;
bool ret = read_u16(id, add, val);
if (!ret) return false;
uint8_t sign = (val >> signbitoff) & 0x01;
uint16_t realval = val & (~(1 << signbitoff));
if (sign == 0) {
regval = realval;
} else {
regval = -realval;
}
return true;
}
bool FeiTeServoMotor::write_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t regval) {
uint16_t val = 0;
if (regval >= 0) {
val = regval;
} else {
val = -regval;
val |= (1 << signbitoff);
}
return write_u16(id, add, val);
}
bool FeiTeServoMotor::write_reg(uint8_t id, bool async, uint8_t add, uint8_t* data, uint8_t len) { //
// ZLOGI(TAG, "write_reg id:%d add:%d len:%d", id, add, len);
cmd_header_t* cmd_header = (cmd_header_t*)m_txbuf;
receipt_header_t* receipt_header = (receipt_header_t*)m_rxbuf;
cmd_header->header = 0xffff;
cmd_header->id = id;
cmd_header->len = 3 + len; // 3 == cmd + add + checksum
cmd_header->cmd = async ? kasyncWrite : kwrite;
cmd_header->data[0] = add;
memcpy(&cmd_header->data[1], data, len);
int txpacketlen = sizeof(cmd_header_t) + 1 + len + 1;
int rxpacketlen = sizeof(receipt_header_t) + 1;
uint8_t checksum = checksum_packet((uint8_t*)cmd_header, txpacketlen);
m_txbuf[txpacketlen - 1] = checksum;
if (!tx_and_rx(m_txbuf, txpacketlen, m_rxbuf, rxpacketlen, OVERTIME)) {
ZLOGE(TAG, "write_reg fail,overtime");
return false;
}
if (!(receipt_header->header == 0xffff && receipt_header->id == id)) {
ZLOGE(TAG, "write_reg fail,receipt header error");
return false;
}
return true;
}
bool FeiTeServoMotor::read_reg(uint8_t id, uint8_t add, uint8_t* data, uint8_t len) {
// return false;
cmd_header_t* cmd_header = (cmd_header_t*)m_txbuf;
receipt_header_t* receipt_header = (receipt_header_t*)m_rxbuf;
cmd_header->header = 0xffff;
cmd_header->id = id;
cmd_header->len = 3 + 1; // 4 == cmd + add + checksum + readlen
cmd_header->cmd = kread;
cmd_header->data[0] = add;
cmd_header->data[1] = len;
int txpacketlen = sizeof(cmd_header_t) + 3;
int rxpacketlen = sizeof(receipt_header_t) + 1 + len;
uint8_t checksum = checksum_packet((uint8_t*)cmd_header, txpacketlen);
m_txbuf[txpacketlen - 1] = checksum;
if (!tx_and_rx(m_txbuf, txpacketlen, m_rxbuf, rxpacketlen, OVERTIME)) {
return false;
}
if (!(receipt_header->header == 0xffff && receipt_header->id == id)) {
ZLOGE(TAG, "read_reg fail,receipt header error");
return false;
}
memcpy(data, receipt_header->data, len);
return true;
}
bool FeiTeServoMotor::tx_and_rx(uint8_t* tx, uint8_t txdatalen, uint8_t* rx, uint8_t expectrxsize, uint16_t overtimems) {
uint32_t enter_ticket = HAL_GetTick();
dumphex("tx:", tx, txdatalen);
HAL_UART_Transmit(m_uart, tx, txdatalen, 1000);
HAL_UART_Receive_DMA(m_uart, (uint8_t*)rx, expectrxsize);
bool overtime_flag = false;
while (HAL_UART_GetState(m_uart) == HAL_UART_STATE_BUSY_RX || //
HAL_UART_GetState(m_uart) == HAL_UART_STATE_BUSY_TX_RX) {
osDelay(1);
int rxsize = expectrxsize - __HAL_DMA_GET_COUNTER(m_hdma_rx);
if (rxsize == expectrxsize) {
dumphex("rx:", rx, expectrxsize);
break;
}
if (zos_haspassedms(enter_ticket) > overtimems) {
if (expectrxsize != 0 && rxsize != 0) {
ZLOGW(TAG, "txandrx overtime rxsize:%d != expect_size:%d", rxsize, expectrxsize);
}
overtime_flag = true;
break;
}
}
HAL_UART_DMAStop(m_uart);
if (overtime_flag) {
return false;
}
return true;
}
bool FeiTeServoMotor::readversion(uint8_t id, uint8_t& mainversion, uint8_t& subversion, uint8_t& miniserv_mainversion, uint8_t& miniserv_subversion) {
uint8_t data = 0;
DO(read_u8(id, kRegFirmwareMainVersion, data));
mainversion = data;
DO(read_u8(id, kRegFirmwareSubVersion, data));
subversion = data;
DO(read_u8(id, kRegServoMainVersion, data));
miniserv_mainversion = data;
DO(read_u8(id, kRegServoSubVersion, data));
miniserv_subversion = data;
return true;
}
uint8_t FeiTeServoMotor::checksum_packet(uint8_t* data, uint8_t len) { return checksum(&data[2], len - 3); }
uint8_t FeiTeServoMotor::checksum(uint8_t* data, uint8_t len) {
// CheckSum=~(ID+Length+Instruction+Parameter1+...ParameterN
uint16_t sum = 0;
for (int i = 0; i < len; i++) {
sum += data[i];
}
return ~(sum & 0xff);
}

210
usrc/feite_servo_motor.hpp

@ -1,210 +1,2 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "sdk/os/zos.hpp"
// #include "sdk/os/zos.hpp"
#define ZSTRUCT(name, ...) \
typedef struct { \
__VA_ARGS__ \
} name;
namespace iflytop {
namespace feite {
typedef enum {
kping = 0x01,
kread = 0x02,
kwrite = 0x03,
kasyncWrite = 0x04,
} cmd_e;
typedef enum {
kServoMode = 0, // 位置伺服模式 42 号地址来控制电机位置
kMotorMode = 1, // 电机恒速模式 46 号地址运行速度来控制电机速度 BIT15 为方向位
kOpenMotorMode = 2, // 扭矩电机模式 44 号地址来控制,1000满扭矩
kStepMotorMode = 3, // 步进电机模式
} run_mode_e; // reg:33
typedef enum {
kRegFirmwareMainVersion = 0, // 固件主版本号
kRegFirmwareSubVersion = 1, // 固件次版本号
kRegServoMainVersion = 3, // 舵机主版本号
kRegServoSubVersion = 4, // 舵机次版本号
kRegServoId = 5, // ID
kRegServoBaudRate = 6, // 波特率
kRegServoDelay = 7, // 返回延时
kRegServoAckLevel = 8, // 应答状态级别
kRegServoMinAngle = 9, // 最小角度限制
kRegServoMaxAngle = 11, // 最大角度限制
kRegServoMaxTemp = 13, // 最高温度上限
kRegServoMaxVoltage = 14, // 最高输入电压
kRegServoMinVoltage = 15, // 最低输入电压
kRegServoMaxTorque = 16, // 最大扭矩
kRegServoPhase = 18, // 相位
kRegServoUnloadCondition = 19, // 卸载条件
kRegServoLedAlarmCondition = 20, // LED 报警条件
kRegServoP = 21, // P 比例系
kRegServoD = 22, // D 微分系
kRegServoI = 23, // I
kRegServoMinStart = 24, // 最小启动
kRegServoCwDeadZone = 26, // 顺时针不灵敏区
kRegServoCcwDeadZone = 27, // 逆时针不灵敏
kRegServoProtectCurrent = 28, // 保护电流
kRegServoAngleResolution = 30, // 角度分辨
kRegServoCalibration = 31, // 位置校正 BIT11为方向位,表示正负方向,BIT0~10位表示范围0-2047步
kRegServoRunMode = 33, // 运行模式
kRegServoProtectTorque = 34, // 保护扭矩
kRegServoProtectTime = 35, // 保护时间
kRegServoOverloadTorque = 36, // 过载扭矩
kRegServoSpeedP = 37, // 速度闭环P比例参数
kRegServoOverloadTime = 38, // 过流保护时间
kRegServoSpeedI = 39, // 速度闭环I积分参数
kRegServoTorqueSwitch = 40, // 扭矩开关
kRegServoAcc = 41, // 加速度
kRegServoTargetPos = 42, // 目标位置
kRegServoRunTime = 44, // 运行时间
kRegServoRunSpeed = 46, // 运行速度
kRegServoTorqueLimit = 48, // 转矩限制
kRegServoLockFlag = 55, // 锁标志
kRegServoCurrentPos = 56, // 当前位置
kRegServoCurrentSpeed = 58, // 当前速度
kRegServoCurrentLoad = 60, // 当前负载 bit10为方向位
kRegServoCurrentVoltage = 62, // 当前电压
kRegServoCurrentTemp = 63, // 当前温度
kRegServoAsyncWriteFlag = 64, // 异步写标志
kRegServoStatus = 65, // 舵机状态
kRegServoMoveFlag = 66, // 移动标志
kRegServoCurrentCurrent = 69, // 当前电流
kRegServoCheckSpeed = 80, // 80 移动检查速度
kRegServoDTime = 81, // 81 D控制时间
kRegServoSpeedUnit = 82, // 82 速度单位系数
kRegServoMinSpeedLimit = 83, // 83 最小速度限制
kRegServoMaxSpeedLimit = 84, // 84 最大速度限制
kRegServoAccLimit = 85, // 85 加速度限制
kRegServoAccMultiple = 86, // 86 加速度倍数
} reg_add_e;
#pragma pack(1)
ZSTRUCT(ping_cmd_t, /* */ uint16_t header; uint8_t id; uint8_t len; uint8_t cmd; uint8_t checksum;)
ZSTRUCT(ping_resp_t, /* */ uint16_t header; uint8_t id; uint8_t len; uint8_t status; uint8_t checksum;)
ZSTRUCT(receipt_header_t, /* */ uint16_t header; uint8_t id; uint8_t len; uint8_t status; uint8_t data[];)
ZSTRUCT(cmd_header_t, /* */ uint16_t header; uint8_t id; uint8_t len; uint8_t cmd; uint8_t data[];)
#pragma pack()
}; // namespace feite
using namespace feite;
class FeiTeServoMotor {
public:
#pragma pack(1)
typedef struct {
uint16_t pos; // 56 当前位置 (0->4096)
int16_t vel; // 58 有符号 bit15为方向位 0.732RPM
int16_t torque; // 60 扭矩:0.1%
} status_t;
typedef struct {
uint16_t pos; // 56 当前位置 (0->4096)
int16_t vel; // 58 有符号 bit15为方向位 0.732RPM
int16_t torque; // 60 有符号 bit10为方向位 扭矩:0.1%
uint8_t voltage; // 62 电压:0.1v
uint8_t temperature; // 63 温度:1度
uint8_t __pad0; // 64 占位
uint8_t state; // 65 舵机状态 Bit0:电压 Bit1:传感器 Bit2:温度 Bit3:电流 Bit4:角度 Bit5:过载
uint8_t moveflag; // 66 移动标志
uint8_t __pad1; // 67
uint8_t __pad2; // 68
uint16_t current; // 69 当前电流 单位:6.5mA
} detailed_status_t;
#pragma pack()
private:
UART_HandleTypeDef* m_uart;
DMA_HandleTypeDef* m_hdma_rx;
DMA_HandleTypeDef* m_hdma_tx;
uint8_t m_txbuf[128] = {0};
uint8_t m_rxbuf[128] = {0};
public:
void initialize(UART_HandleTypeDef* uart, DMA_HandleTypeDef* hdma_rx, DMA_HandleTypeDef* hdma_tx);
bool ping(uint8_t id);
bool readversion(uint8_t id, uint8_t& mainversion, uint8_t& subversion, uint8_t& miniserv_mainversion, uint8_t& miniserv_subversion);
bool setmode(uint8_t id, run_mode_e runmode);
run_mode_e getmode(uint8_t id);
bool getmode(uint8_t id, run_mode_e& runmode);
// kRegServoTorqueSwitch
bool setTorqueSwitch(uint8_t id, bool on);
bool getTorqueSwitch(uint8_t id, bool& on);
bool getNowPos(uint8_t id, int16_t& pos);
bool setTargetPos(uint8_t id, int16_t pos);
bool getServoCalibration(uint8_t, int16_t& poscalibration);
bool reCalibration(int id, int16_t pos);
bool triggerAysncWrite(uint8_t id);
/**
* @brief
*
* @param id
* @param speed
* @param torque 0->1000 0/1000
* @return true
* @return false
*/
bool rotate(uint8_t id, int16_t speed, uint16_t torque = 0);
/**
* @brief
*
* @param id
* @param pos
* @param speed
* @param torque
* @return true
* @return false
*/
bool moveTo(uint8_t id, int16_t pos, int16_t speed, uint16_t torque);
bool moveWithTorque(uint8_t id, int16_t torque);
bool read_status(uint8_t id, status_t* status);
void dump_status(status_t* status);
bool read_detailed_status(uint8_t id, detailed_status_t* detailed_status);
void dump_detailed_status(detailed_status_t* detailed_status);
bool getMoveFlag(uint8_t id, uint8_t& moveflag);
public:
bool write_u8(uint8_t id, feite::reg_add_e add, uint8_t regval);
bool write_u16(uint8_t id, feite::reg_add_e add, uint16_t regval);
bool write_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t regval);
bool async_write_u8(uint8_t id, feite::reg_add_e add, uint8_t regval);
bool async_write_u16(uint8_t id, feite::reg_add_e add, uint16_t regval);
bool async_write_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t regval);
bool read_u8(uint8_t id, feite::reg_add_e add, uint8_t& regval);
bool read_u16(uint8_t id, feite::reg_add_e add, uint16_t& regval);
bool read_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t& regval);
public:
bool write_reg(uint8_t id, bool async, uint8_t add, uint8_t* data, uint8_t len);
bool read_reg(uint8_t id, uint8_t add, uint8_t* data, uint8_t len);
bool tx_and_rx(uint8_t* tx, uint8_t txdatalen, uint8_t* rx, uint8_t expectrxsize, uint16_t overtimems);
private:
uint8_t checksum(uint8_t* data, uint8_t len);
uint8_t checksum_packet(uint8_t* data, uint8_t len);
};
} // namespace iflytop
#include "sdk\components\mini_servo_motor\feite_servo_motor.hpp"
Loading…
Cancel
Save