Browse Source

update

master
zhaohe 2 years ago
parent
commit
f8934dac29
  1. 108
      led_test.fdc
  2. 169
      led_test.pds
  3. 202
      source/async.v
  4. 44
      source/led_test.v
  5. 31
      source/src/baud_rate_gen.v
  6. 24
      source/src/top.v
  7. 76
      source/src/transmitter.v
  8. 129
      source/src/uart_reg_reader.v
  9. 172
      source/src/uart_rx.v
  10. 161
      source/src/uart_tx.v
  11. 35
      source/test.v
  12. 30
      source/test/test_baud_rate_gen.v
  13. 50
      source/test/test_top.v
  14. 51
      source/test/test_transmitter.v
  15. 66
      source/test/test_uart_reg_reader.v

108
led_test.fdc

@ -16,12 +16,12 @@
#define_attribute {p:led[1]} {PAP_IO_STANDARD} {LVCMOS33}
#define_attribute {p:led[1]} {PAP_IO_DRIVE} {4}
#define_attribute {p:led[1]} {PAP_IO_SLEW} {SLOW}
define_attribute {p:led[0]} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:led[0]} {PAP_IO_LOC} {U10}
define_attribute {p:led[0]} {PAP_IO_VCCIO} {3.3}
define_attribute {p:led[0]} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:led[0]} {PAP_IO_DRIVE} {4}
define_attribute {p:led[0]} {PAP_IO_SLEW} {SLOW}
#define_attribute {p:led[0]} {PAP_IO_DIRECTION} {OUTPUT}
#define_attribute {p:led[0]} {PAP_IO_LOC} {R11}
#define_attribute {p:led[0]} {PAP_IO_VCCIO} {3.3}
#define_attribute {p:led[0]} {PAP_IO_STANDARD} {LVCMOS33}
#define_attribute {p:led[0]} {PAP_IO_DRIVE} {4}
#define_attribute {p:led[0]} {PAP_IO_SLEW} {SLOW}
#define_attribute {p:rst_n} {PAP_IO_DIRECTION} {INPUT}
#define_attribute {p:rst_n} {PAP_IO_LOC} {U11}
#define_attribute {p:rst_n} {PAP_IO_VCCIO} {3.3}
@ -58,3 +58,99 @@ define_attribute {p:sys_clk} {PAP_IO_VCCIO} {3.3}
define_attribute {p:sys_clk} {PAP_IO_STANDARD} {LVTTL33}
#create_clock -name {} -period {10.000} -waveform {0.000 5.000}
#define_attribute {p:sys_clk} {PAP_IO_HYS_DRIVE_MODE} {NOHYS}
#define_attribute {p:uart_tx} {PAP_IO_DIRECTION} {OUTPUT}
#define_attribute {p:uart_tx} {PAP_IO_LOC} {T11}
#define_attribute {p:uart_tx} {PAP_IO_VCCIO} {3.3}
#define_attribute {p:uart_tx} {PAP_IO_STANDARD} {LVCMOS33}
#define_attribute {p:uart_tx} {PAP_IO_DRIVE} {4}
#define_attribute {p:uart_tx} {PAP_IO_SLEW} {SLOW}
#define_attribute {p:tx_TxD_start} {PAP_IO_DIRECTION} {OUTPUT}
#define_attribute {p:tx_TxD_start} {PAP_IO_LOC} {T11}
#define_attribute {p:tx_TxD_start} {PAP_IO_VCCIO} {3.3}
#define_attribute {p:tx_TxD_start} {PAP_IO_STANDARD} {LVCMOS33}
#define_attribute {p:tx_TxD_start} {PAP_IO_DRIVE} {4}
#define_attribute {p:tx_TxD_start} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io3} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io3} {PAP_IO_LOC} {T11}
define_attribute {p:test_io3} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io3} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io3} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io3} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io4} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io4} {PAP_IO_LOC} {R11}
define_attribute {p:test_io4} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io4} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io4} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io4} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io5} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io5} {PAP_IO_LOC} {P12}
define_attribute {p:test_io5} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io5} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io5} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io5} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io6} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io6} {PAP_IO_LOC} {P11}
define_attribute {p:test_io6} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io6} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io6} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io6} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io7} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io7} {PAP_IO_LOC} {T13}
define_attribute {p:test_io7} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io7} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io7} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io7} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io8} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io8} {PAP_IO_LOC} {R13}
define_attribute {p:test_io8} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io8} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io8} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io8} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io9} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io9} {PAP_IO_LOC} {P13}
define_attribute {p:test_io9} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io9} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io9} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io9} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io10} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io10} {PAP_IO_LOC} {P14}
define_attribute {p:test_io10} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io10} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io10} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io10} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io11} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io11} {PAP_IO_LOC} {R15}
define_attribute {p:test_io11} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io11} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io11} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io11} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io12} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io12} {PAP_IO_LOC} {R14}
define_attribute {p:test_io12} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io12} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io12} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io12} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io13} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io13} {PAP_IO_LOC} {T16}
define_attribute {p:test_io13} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io13} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io13} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io13} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io14} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io14} {PAP_IO_LOC} {R16}
define_attribute {p:test_io14} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io14} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io14} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io14} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io15} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io15} {PAP_IO_LOC} {U16}
define_attribute {p:test_io15} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io15} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io15} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io15} {PAP_IO_SLEW} {SLOW}
define_attribute {p:test_io16} {PAP_IO_DIRECTION} {OUTPUT}
define_attribute {p:test_io16} {PAP_IO_LOC} {V16}
define_attribute {p:test_io16} {PAP_IO_VCCIO} {3.3}
define_attribute {p:test_io16} {PAP_IO_STANDARD} {LVCMOS33}
define_attribute {p:test_io16} {PAP_IO_DRIVE} {4}
define_attribute {p:test_io16} {PAP_IO_SLEW} {SLOW}

169
led_test.pds

@ -1,5 +1,5 @@
(_flow fab_demo "2021.1-SP7"
(_comment "Generated by Fabric Compiler (version on 2021.1-SP7<build 86875>) at Wed Dec 13 10:56:09 2023")
(_comment "Generated by Fabric Compiler (version on 2021.1-SP7<build 86875>) at Thu Dec 14 20:47:37 2023")
(_version "1.0.5")
(_status "initial")
(_project
@ -17,13 +17,29 @@
)
(_widget wgt_my_design_src
(_input
(_file "source/led_test.v" + "led_test"
(_file "source/src/transmitter.v"
(_format verilog)
(_timespec "2023-12-12T18:38:54")
(_timespec "2023-12-14T15:23:21")
)
(_file "source/async.v"
(_file "source/src/baud_rate_gen.v"
(_format verilog)
(_timespec "2023-12-13T10:42:04")
(_timespec "2023-12-13T15:21:23")
)
(_file "source/src/top.v" + "Top"
(_format verilog)
(_timespec "2023-12-14T16:57:50")
)
(_file "source/src/uart_tx.v"
(_format verilog)
(_timespec "2017-08-01T15:37:24")
)
(_file "source/src/uart_rx.v"
(_format verilog)
(_timespec "2023-12-13T10:31:56")
)
(_file "source/src/uart_reg_reader.v"
(_format verilog)
(_timespec "2023-12-14T20:47:29")
)
)
)
@ -33,7 +49,7 @@
(_input
(_file "led_test.fdc"
(_format fdc)
(_timespec "2023-12-08T19:12:53")
(_timespec "2023-12-13T22:49:15")
)
)
)
@ -41,10 +57,27 @@
(_attribute _click_to_run (_switch ON))
)
(_widget wgt_simulation
(_option compiled_lib_location (_string "pango_sim_libraries"))
(_option verilog_options (_string ""))
(_option gen_param (_string ""))
(_option simulate_runtime (_string "10000ms"))
(_option sim_exe_dir (_string "C:/modeltech64_10.5/win64"))
(_input
(_file "source/test.v" + "vtf_led_test"
(_file "source/test/test_transmitter.v"
(_format verilog)
(_timespec "2023-12-13T19:33:40")
)
(_file "source/test/test_baud_rate_gen.v"
(_format verilog)
(_timespec "2023-12-13T19:30:23")
)
(_file "source/test/test_top.v"
(_format verilog)
(_timespec "2023-12-13T21:56:53")
)
(_file "source/test/test_uart_reg_reader.v" + "test_uart_reg_reader:"
(_format verilog)
(_timespec "2023-12-12T18:47:34")
(_timespec "2023-12-14T20:29:04")
)
)
)
@ -53,19 +86,19 @@
(_command cmd_compile
(_gci_state (_integer 2))
(_db_output
(_file "compile/led_test_comp.adf"
(_file "compile/Top_comp.adf"
(_format adif)
(_timespec "2023-12-13T10:55:49")
(_timespec "2023-12-14T20:47:35")
)
)
(_output
(_file "compile/led_test.cmr"
(_file "compile/Top.cmr"
(_format verilog)
(_timespec "2023-12-13T10:55:49")
(_timespec "2023-12-14T20:47:35")
)
(_file "compile/cmr.db"
(_format text)
(_timespec "2023-12-13T10:55:49")
(_timespec "2023-12-14T20:47:35")
)
)
)
@ -79,23 +112,23 @@
(_option ads (_switch ON))
(_option selected_syn_tool_opt (_integer 2))
(_db_output
(_file "synthesize/led_test_syn.adf"
(_file "synthesize/Top_syn.adf"
(_format adif)
(_timespec "2023-12-13T10:55:53")
(_timespec "2023-12-14T20:47:37")
)
)
(_output
(_file "synthesize/led_test_syn.vm"
(_file "synthesize/Top_syn.vm"
(_format structural_verilog)
(_timespec "2023-12-13T10:55:53")
(_timespec "2023-12-14T20:47:37")
)
(_file "synthesize/led_test.snr"
(_file "synthesize/Top.snr"
(_format text)
(_timespec "2023-12-13T10:55:53")
(_timespec "2023-12-14T20:47:37")
)
(_file "synthesize/snr.db"
(_format text)
(_timespec "2023-12-13T10:55:53")
(_timespec "2023-12-14T20:47:37")
)
)
)
@ -112,34 +145,14 @@
)
(_task tsk_devmap
(_command cmd_devmap
(_gci_state (_integer 2))
(_db_output
(_file "device_map/led_test_map.adf"
(_format adif)
(_timespec "2023-12-13T10:55:57")
)
)
(_output
(_file "device_map/led_test_dmr.prt"
(_format text)
(_timespec "2023-12-13T10:55:57")
)
(_file "device_map/led_test.dmr"
(_format text)
(_timespec "2023-12-13T10:55:57")
)
(_file "device_map/dmr.db"
(_format text)
(_timespec "2023-12-13T10:55:57")
)
)
(_gci_state (_integer 0))
)
(_widget wgt_edit_placement_cons
(_attribute _click_to_run (_switch ON))
(_input
(_file "device_map/led_test.pcf"
(_format pcf)
(_timespec "2023-12-13T10:55:57")
(_timespec "2023-12-14T20:10:02")
)
)
)
@ -149,39 +162,7 @@
)
(_task tsk_pnr
(_command cmd_pnr
(_gci_state (_integer 2))
(_db_output
(_file "place_route/led_test_pnr.adf"
(_format adif)
(_timespec "2023-12-13T10:56:02")
)
)
(_output
(_file "place_route/led_test.prr"
(_format text)
(_timespec "2023-12-13T10:56:02")
)
(_file "place_route/led_test_prr.prt"
(_format text)
(_timespec "2023-12-13T10:56:02")
)
(_file "place_route/clock_utilization.txt"
(_format text)
(_timespec "2023-12-13T10:56:02")
)
(_file "place_route/led_test_plc.adf"
(_format adif)
(_timespec "2023-12-13T10:56:01")
)
(_file "place_route/led_test_pnr.netlist"
(_format text)
(_timespec "2023-12-13T10:56:02")
)
(_file "place_route/prr.db"
(_format text)
(_timespec "2023-12-13T10:56:02")
)
)
(_gci_state (_integer 0))
)
(_widget wgt_power_calculator
(_attribute _click_to_run (_switch ON))
@ -190,24 +171,8 @@
(_attribute _click_to_run (_switch ON))
)
(_command cmd_report_post_pnr_timing
(_gci_state (_integer 2))
(_gci_state (_integer 0))
(_attribute _auto_exe_lock (_switch OFF))
(_db_output
(_file "report_timing/led_test_rtp.adf"
(_format adif)
(_timespec "2023-12-13T10:56:05")
)
)
(_output
(_file "report_timing/led_test.rtr"
(_format text)
(_timespec "2023-12-13T10:56:05")
)
(_file "report_timing/rtr.db"
(_format text)
(_timespec "2023-12-13T10:56:05")
)
)
)
(_widget wgt_arch_browser
(_attribute _click_to_run (_switch ON))
@ -225,25 +190,7 @@
)
(_task tsk_gen_bitstream
(_command cmd_gen_bitstream
(_gci_state (_integer 2))
(_output
(_file "generate_bitstream/led_test.sbit"
(_format text)
(_timespec "2023-12-13T10:56:09")
)
(_file "generate_bitstream/led_test.smsk"
(_format text)
(_timespec "2023-12-13T10:56:09")
)
(_file "generate_bitstream/led_test.bgr"
(_format text)
(_timespec "2023-12-13T10:56:09")
)
(_file "generate_bitstream/bgr.db"
(_format text)
(_timespec "2023-12-13T10:56:09")
)
)
(_gci_state (_integer 0))
)
)
)

202
source/async.v

@ -1,202 +0,0 @@
////////////////////////////////////////////////////////
// RS-232 RX and TX module
// (c) fpga4fun.com & KNJN LLC - 2003 to 2016
// The RS-232 settings are fixed
// TX: 8-bit data, 2 stop, no-parity
// RX: 8-bit data, 1 stop, no-parity (the receiver can accept more stop bits of course)
//`define SIMULATION // in this mode, TX outputs one bit per clock cycle
// and RX receives one bit per clock cycle (for fast simulations)
////////////////////////////////////////////////////////
module async_transmitter(
input clk,
input TxD_start,
input [7:0] TxD_data,
output TxD,
output TxD_busy
);
// Assert TxD_start for (at least) one clock cycle to start transmission of TxD_data
// TxD_data is latched so that it doesn't have to stay valid while it is being sent
parameter ClkFrequency = 50000000; // 50MHz
parameter Baud = 115200;
generate
if(ClkFrequency<Baud*8 && (ClkFrequency % Baud!=0)) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency incompatible with requested Baud rate");
endgenerate
////////////////////////////////
`ifdef SIMULATION
wire BitTick = 1'b1; // output one bit per clock cycle
`else
wire BitTick;
BaudTickGen #(ClkFrequency, Baud) tickgen(.clk(clk), .enable(TxD_busy), .tick(BitTick));
`endif
reg [3:0] TxD_state = 0;
wire TxD_ready = (TxD_state==0);
assign TxD_busy = ~TxD_ready;
reg [7:0] TxD_shift = 0;
always @(posedge clk)
begin
if(TxD_ready & TxD_start)
TxD_shift <= TxD_data;
else
if(TxD_state[3] & BitTick)
TxD_shift <= (TxD_shift >> 1);
case(TxD_state)
4'b0000: if(TxD_start) TxD_state <= 4'b0100;
4'b0100: if(BitTick) TxD_state <= 4'b1000; // start bit
4'b1000: if(BitTick) TxD_state <= 4'b1001; // bit 0
4'b1001: if(BitTick) TxD_state <= 4'b1010; // bit 1
4'b1010: if(BitTick) TxD_state <= 4'b1011; // bit 2
4'b1011: if(BitTick) TxD_state <= 4'b1100; // bit 3
4'b1100: if(BitTick) TxD_state <= 4'b1101; // bit 4
4'b1101: if(BitTick) TxD_state <= 4'b1110; // bit 5
4'b1110: if(BitTick) TxD_state <= 4'b1111; // bit 6
4'b1111: if(BitTick) TxD_state <= 4'b0010; // bit 7
4'b0010: if(BitTick) TxD_state <= 4'b0011; // stop1
4'b0011: if(BitTick) TxD_state <= 4'b0000; // stop2
default: if(BitTick) TxD_state <= 4'b0000;
endcase
end
assign TxD = (TxD_state<4) | (TxD_state[3] & TxD_shift[0]); // put together the start, data and stop bits
endmodule
////////////////////////////////////////////////////////
module async_receiver(
input clk,
input RxD,
output reg RxD_data_ready = 0,
output reg [7:0] RxD_data = 0, // data received, valid only (for one clock cycle) when RxD_data_ready is asserted
// We also detect if a gap occurs in the received stream of characters
// That can be useful if multiple characters are sent in burst
// so that multiple characters can be treated as a "packet"
output RxD_idle, // asserted when no data has been received for a while
output reg RxD_endofpacket = 0 // asserted for one clock cycle when a packet has been detected (i.e. RxD_idle is going high)
);
parameter ClkFrequency = 25000000; // 25MHz
parameter Baud = 115200;
parameter Oversampling = 8; // needs to be a power of 2
// we oversample the RxD line at a fixed rate to capture each RxD data bit at the "right" time
// 8 times oversampling by default, use 16 for higher quality reception
generate
if(ClkFrequency<Baud*Oversampling) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency too low for current Baud rate and oversampling");
if(Oversampling<8 || ((Oversampling & (Oversampling-1))!=0)) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Invalid oversampling value");
endgenerate
////////////////////////////////
reg [3:0] RxD_state = 0;
`ifdef SIMULATION
wire RxD_bit = RxD;
wire sampleNow = 1'b1; // receive one bit per clock cycle
`else
wire OversamplingTick;
BaudTickGen #(ClkFrequency, Baud, Oversampling) tickgen(.clk(clk), .enable(1'b1), .tick(OversamplingTick));
// synchronize RxD to our clk domain
reg [1:0] RxD_sync = 2'b11;
always @(posedge clk) if(OversamplingTick) RxD_sync <= {RxD_sync[0], RxD};
// and filter it
reg [1:0] Filter_cnt = 2'b11;
reg RxD_bit = 1'b1;
always @(posedge clk)
if(OversamplingTick)
begin
if(RxD_sync[1]==1'b1 && Filter_cnt!=2'b11) Filter_cnt <= Filter_cnt + 1'd1;
else
if(RxD_sync[1]==1'b0 && Filter_cnt!=2'b00) Filter_cnt <= Filter_cnt - 1'd1;
if(Filter_cnt==2'b11) RxD_bit <= 1'b1;
else
if(Filter_cnt==2'b00) RxD_bit <= 1'b0;
end
// and decide when is the good time to sample the RxD line
function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction
localparam l2o = log2(Oversampling);
reg [l2o-2:0] OversamplingCnt = 0;
always @(posedge clk) if(OversamplingTick) OversamplingCnt <= (RxD_state==0) ? 1'd0 : OversamplingCnt + 1'd1;
wire sampleNow = OversamplingTick && (OversamplingCnt==Oversampling/2-1);
`endif
// now we can accumulate the RxD bits in a shift-register
always @(posedge clk)
case(RxD_state)
4'b0000: if(~RxD_bit) RxD_state <= `ifdef SIMULATION 4'b1000 `else 4'b0001 `endif; // start bit found?
4'b0001: if(sampleNow) RxD_state <= 4'b1000; // sync start bit to sampleNow
4'b1000: if(sampleNow) RxD_state <= 4'b1001; // bit 0
4'b1001: if(sampleNow) RxD_state <= 4'b1010; // bit 1
4'b1010: if(sampleNow) RxD_state <= 4'b1011; // bit 2
4'b1011: if(sampleNow) RxD_state <= 4'b1100; // bit 3
4'b1100: if(sampleNow) RxD_state <= 4'b1101; // bit 4
4'b1101: if(sampleNow) RxD_state <= 4'b1110; // bit 5
4'b1110: if(sampleNow) RxD_state <= 4'b1111; // bit 6
4'b1111: if(sampleNow) RxD_state <= 4'b0010; // bit 7
4'b0010: if(sampleNow) RxD_state <= 4'b0000; // stop bit
default: RxD_state <= 4'b0000;
endcase
always @(posedge clk)
if(sampleNow && RxD_state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]};
//reg RxD_data_error = 0;
always @(posedge clk)
begin
RxD_data_ready <= (sampleNow && RxD_state==4'b0010 && RxD_bit); // make sure a stop bit is received
//RxD_data_error <= (sampleNow && RxD_state==4'b0010 && ~RxD_bit); // error if a stop bit is not received
end
`ifdef SIMULATION
assign RxD_idle = 0;
`else
reg [l2o+1:0] GapCnt = 0;
always @(posedge clk) if (RxD_state!=0) GapCnt<=0; else if(OversamplingTick & ~GapCnt[log2(Oversampling)+1]) GapCnt <= GapCnt + 1'h1;
assign RxD_idle = GapCnt[l2o+1];
always @(posedge clk) RxD_endofpacket <= OversamplingTick & ~GapCnt[l2o+1] & &GapCnt[l2o:0];
`endif
endmodule
////////////////////////////////////////////////////////
// dummy module used to be able to raise an assertion in Verilog
module ASSERTION_ERROR();
endmodule
////////////////////////////////////////////////////////
module BaudTickGen(
input clk, enable,
output tick // generate a tick at the specified baud rate * oversampling
);
parameter ClkFrequency = 25000000;
parameter Baud = 115200;
parameter Oversampling = 1;
function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction
localparam AccWidth = log2(ClkFrequency/Baud)+8; // +/- 2% max timing error over a byte
reg [AccWidth:0] Acc = 0;
localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth)); // this makes sure Inc calculation doesn't overflow
localparam Inc = ((Baud*Oversampling << (AccWidth-ShiftLimiter))+(ClkFrequency>>(ShiftLimiter+1)))/(ClkFrequency>>ShiftLimiter);
always @(posedge clk) if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0]; else Acc <= Inc[AccWidth:0];
assign tick = Acc[AccWidth];
endmodule
////////////////////////////////////////////////////////

44
source/led_test.v

@ -1,44 +0,0 @@
`timescale 1ns/1ns
module led_test
(
sys_clk, // system clock 50Mhz on board
rst_n, // reset ,low active
led // LED,use for control the LED signal on board
);
input sys_clk;
input rst_n;
output [3:0] led;
//define the time counter
reg [31:0] timer;
reg [3:0] led;
always @(posedge sys_clk or negedge rst_n)
begin
if (~rst_n)
timer <= 32'd0; // when the reset signal valid,time counter clearing
else if (timer == 32'd199_9999_9) //4 seconds count(50M*4-1=199999999)
timer <= 32'd0; //count done,clearing the time counter
else
timer <= timer + 1'b1; //timer counter = timer counter + 1
end
always @(posedge sys_clk or negedge rst_n)
begin
if (~rst_n)
led <= 4'b0000; //when the reset signal active
else if (timer == 32'd49_999_9) //time counter count to 1st sec,LED1 Extinguish
led <= 4'b0001;
else if (timer == 32'd99_999_9) //time counter count to 2nd sec,LED2 Extinguish
begin
led <= 4'b0010;
end
else if (timer == 32'd149_999_9) //time counter count to 3nd sec,LED3 Extinguish
led <= 4'b0100;
else if (timer == 32'd199_999_9) //time counter count to 4nd sec,LED4 Extinguish
led <= 4'b1000;
end
endmodule

31
source/src/baud_rate_gen.v

@ -0,0 +1,31 @@
/*
* Hacky baud rate generator to divide a 50MHz clock into a 115200 baud
* rx/tx pair where the rx clcken oversamples by 16x.
*/
module baud_rate_gen (
input wire clk_50m,
output wire rxclk_en,
output wire txclk_en
);
parameter RX_ACC_MAX = 50000000 / (115200 * 16);
parameter TX_ACC_MAX = 50000000 / 115200;
parameter RX_ACC_WIDTH = $clog2(RX_ACC_MAX);
parameter TX_ACC_WIDTH = $clog2(TX_ACC_MAX);
reg [RX_ACC_WIDTH - 1:0] rx_acc = 0;
reg [TX_ACC_WIDTH - 1:0] tx_acc = 0;
assign rxclk_en = (rx_acc == 5'd0);
assign txclk_en = (tx_acc == 9'd0);
always @(posedge clk_50m) begin
if (rx_acc == RX_ACC_MAX[RX_ACC_WIDTH-1:0]) rx_acc <= 0;
else rx_acc <= rx_acc + 5'b1;
end
always @(posedge clk_50m) begin
if (tx_acc == TX_ACC_MAX[TX_ACC_WIDTH-1:0]) tx_acc <= 0;
else tx_acc <= tx_acc + 9'b1;
end
endmodule

24
source/src/top.v

@ -0,0 +1,24 @@
`timescale 1ns / 1ns
module Top (
input sys_clk,
input rst_n,
output reg [3:0] led,
output wire test_io3,
output wire test_io4,
output wire test_io5,
output wire test_io6,
output wire test_io7,
output wire test_io8,
output wire test_io9,
output wire test_io10,
output wire test_io11,
output wire test_io12,
output wire test_io13,
output wire test_io14,
output wire test_io15,
output wire test_io16
);
endmodule

76
source/src/transmitter.v

@ -0,0 +1,76 @@
module transmitter (
input wire [7:0] din,
input wire wr_en,
input wire clk_50m,
input wire clken,
input wire rest_n,
output reg tx,
output wire tx_busy,
output wire [1:0] t_state,
output wire [2:0] t_bitpos,
output wire t_worksignal
);
parameter STATE_IDLE = 2'b00;
parameter STATE_START = 2'b01;
parameter STATE_DATA = 2'b10;
parameter STATE_STOP = 2'b11;
initial begin
tx = 1'b1;
end
reg [7:0] data = 8'h00;
reg [2:0] bitpos = 3'h0;
reg [1:0] state = STATE_IDLE;
reg worksignal = 0;
assign workflag = (state != STATE_IDLE);
always @(posedge clken, posedge wr_en) begin
if (wr_en) begin
worksignal <= 1'b1;
data <= din;
end else begin
if (!workflag) worksignal <= 1'b0;
end
end
always @(posedge clken or negedge rest_n) begin
if (!rest_n) begin
state <= STATE_IDLE;
end else begin
case (state)
STATE_IDLE: begin
tx <= 1'b1;
if (worksignal) begin
state <= STATE_START;
bitpos <= 0;
end
end
STATE_START: begin
tx <= 1'b0;
state <= STATE_DATA;
end
STATE_DATA: begin
if (bitpos == 3'h7) state <= STATE_STOP;
else bitpos <= bitpos + 3'h1;
tx <= data[bitpos];
end
STATE_STOP: begin
tx <= 1'b1;
state <= STATE_IDLE;
end
default begin
tx <= 1'b1;
state <= STATE_IDLE;
end
endcase
end
end
assign tx_busy = (state != STATE_IDLE);
assign t_state = state;
assign t_bitpos = bitpos;
assign t_worksignal = worksignal;
endmodule

129
source/src/uart_reg_reader.v

@ -0,0 +1,129 @@
module uart_reg_reader #(
parameter CLK_FRE = 50, //clock frequency(Mhz)
parameter BAUD_RATE = 115200 //serial baud rate
) (
input clk, //clock input
input rst_n, //asynchronous reset input, low active
input wire [31:0] reg_data, //received serial data
output reg [ 7:0] reg_add,
output reg reg_add_valid,
input wire uart_rx_pin,
output wire uart_tx_pin
);
//
// overtime
// |----------------------^
// v |
// IDLE ---------------> READ REG ADD ---------------> READ_REG ---------------> SEND_REG_DATA
// ^ |
// |------------------------------------------------------------------------------------v
//
//
//
//
parameter STATE_IDLE = 0;
parameter STATE_READ_REG_ADD = 1;
parameter STATE_READ_REG = 2;
parameter STATE_SEND_REG_DATA = 3;
parameter STATE_WAIT_SEND_END = 4;
wire [7:0] rx_data;
wire rx_data_valid;
wire rx_data_ready;
wire tx_data_ready;
reg [7:0] tx_data;
reg tx_data_valid;
reg [7:0] state;
reg [7:0] rxpacket_num;
reg [7:0] txpacket_num;
reg [7:0] rxdatacache; //接收数据buffer
uart_rx #(
.CLK_FRE (CLK_FRE),
.BAUD_RATE(BAUD_RATE)
) uart_rx_impl (
.clk (clk), // input
.rst_n (rst_n), // input
.rx_data (rx_data), // output
.rx_data_valid(rx_data_valid), // output
.rx_data_ready(rx_data_ready), // input
.rx_pin (uart_rx_pin) // input
);
uart_tx #(
.CLK_FRE (CLK_FRE),
.BAUD_RATE(BAUD_RATE)
) uart_tx_impl (
.clk (clk), // input
.rst_n (rst_n), // input
.tx_data (tx_data), // input
.tx_data_valid(tx_data_valid), // input
.tx_data_ready(tx_data_ready), // output
.tx_pin (uart_tx_pin) // output
);
assign rx_data_ready = 1'b1;
reg [3:0] txdatastep = 0;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
state <= STATE_IDLE;
rxpacket_num <= 0;
txpacket_num <= 0;
txdatastep <= 0;
end else begin
case (state)
STATE_IDLE: begin
rxpacket_num <= 0;
txpacket_num <= 0;
txdatastep <= 0;
state <= STATE_READ_REG_ADD;
end
STATE_READ_REG_ADD: begin
if (rxpacket_num == 1) begin
state <= STATE_READ_REG;
end else if (rx_data_valid) begin
rxdatacache <= rx_data;
rxpacket_num <= rxpacket_num + 1;
end
end
STATE_READ_REG: begin
state <= STATE_SEND_REG_DATA;
end
STATE_SEND_REG_DATA: begin
case (txdatastep)
0: begin
tx_data <= rxdatacache;
tx_data_valid <= 1;
txpacket_num <= txpacket_num + 1;
txdatastep <= 1;
end
1: begin
tx_data_valid <= 0;
txdatastep <= 2;
end
2: begin
if (tx_data_ready) begin
if (txpacket_num != 4) begin
txdatastep <= 0;
end else begin
txdatastep <= 0;
state <= STATE_IDLE;
end
end
end
endcase
end
default begin
state <= STATE_IDLE;
end
endcase
end
end
endmodule

172
source/src/uart_rx.v

@ -0,0 +1,172 @@
//////////////////////////////////////////////////////////////////////////////////
// //
// //
// Author: meisq //
// msq@qq.com //
// ALINX(shanghai) Technology Co.,Ltd //
// heijin //
// WEB: http://www.alinx.cn/ //
// BBS: http://www.heijin.org/ //
// //
//////////////////////////////////////////////////////////////////////////////////
// //
// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //
// All rights reserved //
// //
// This source file may be used and distributed without restriction provided //
// that this copyright statement is not removed from the file and that any //
// derivative work contains the original copyright notice and the associated //
// disclaimer. //
// //
//////////////////////////////////////////////////////////////////////////////////
//================================================================================
// Revision History:
// Date By Revision Change Description
//--------------------------------------------------------------------------------
//2017/8/1 1.0 Original
//*******************************************************************************/
module uart_rx
#(
parameter CLK_FRE = 50, //clock frequency(Mhz)
parameter BAUD_RATE = 115200 //serial baud rate
)
(
input clk, //clock input
input rst_n, //asynchronous reset input, low active
output reg[7:0] rx_data, //received serial data
output reg rx_data_valid, //received serial data is valid
input rx_data_ready, //data receiver module ready
input rx_pin //serial data input
);
//calculates the clock cycle for baud rate
localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE;
//state machine code
localparam S_IDLE = 1;
localparam S_START = 2; //start bit
localparam S_REC_BYTE = 3; //data bits
localparam S_STOP = 4; //stop bit
localparam S_DATA = 5;
reg[2:0] state;
reg[2:0] next_state;
reg rx_d0; //delay 1 clock for rx_pin
reg rx_d1; //delay 1 clock for rx_d0
wire rx_negedge; //negedge of rx_pin
reg[7:0] rx_bits; //temporary storage of received data
reg[15:0] cycle_cnt; //baud counter
reg[2:0] bit_cnt; //bit counter
assign
rx_negedge = rx_d1 && ~rx_d0;
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
rx_d0 <= 1'b0;
rx_d1 <= 1'b0;
end
else
begin
rx_d0 <= rx_pin;
rx_d1 <= rx_d0;
end
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
state <= S_IDLE;
else
state <= next_state;
end
always@(*)
begin
case(state)
S_IDLE:
if(rx_negedge)
next_state <= S_START;
else
next_state <= S_IDLE;
S_START:
if(cycle_cnt == CYCLE - 1)//one data cycle
next_state <= S_REC_BYTE;
else
next_state <= S_START;
S_REC_BYTE:
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
next_state <= S_STOP;
else
next_state <= S_REC_BYTE;
S_STOP:
if(cycle_cnt == CYCLE/2 - 1)//half bit cycle,to avoid missing the next byte receiver
next_state <= S_DATA;
else
next_state <= S_STOP;
S_DATA:
if(rx_data_ready) //data receive complete
next_state <= S_IDLE;
else
next_state <= S_DATA;
default:
next_state <= S_IDLE;
endcase
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
rx_data_valid <= 1'b0;
else if(state == S_STOP && next_state != state)
rx_data_valid <= 1'b1;
else if(state == S_DATA && rx_data_ready)
rx_data_valid <= 1'b0;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
rx_data <= 8'd0;
else if(state == S_STOP && next_state != state)
rx_data <= rx_bits;//latch received data
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
bit_cnt <= 3'd0;
end
else if(state == S_REC_BYTE)
if(cycle_cnt == CYCLE - 1)
bit_cnt <= bit_cnt + 3'd1;
else
bit_cnt <= bit_cnt;
else
bit_cnt <= 3'd0;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
cycle_cnt <= 16'd0;
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
cycle_cnt <= 16'd0;
else
cycle_cnt <= cycle_cnt + 16'd1;
end
//receive serial data bit data
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
rx_bits <= 8'd0;
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
rx_bits[bit_cnt] <= rx_pin;
else
rx_bits <= rx_bits;
end
endmodule

161
source/src/uart_tx.v

@ -0,0 +1,161 @@
//////////////////////////////////////////////////////////////////////////////////
// //
// //
// Author: meisq //
// msq@qq.com //
// ALINX(shanghai) Technology Co.,Ltd //
// heijin //
// WEB: http://www.alinx.cn/ //
// BBS: http://www.heijin.org/ //
// //
//////////////////////////////////////////////////////////////////////////////////
// //
// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //
// All rights reserved //
// //
// This source file may be used and distributed without restriction provided //
// that this copyright statement is not removed from the file and that any //
// derivative work contains the original copyright notice and the associated //
// disclaimer. //
// //
//////////////////////////////////////////////////////////////////////////////////
//================================================================================
// Revision History:
// Date By Revision Change Description
//--------------------------------------------------------------------------------
//2017/8/1 1.0 Original
//*******************************************************************************/
module uart_tx
#(
parameter CLK_FRE = 50, //clock frequency(Mhz)
parameter BAUD_RATE = 115200 //serial baud rate
)
(
input clk, //clock input
input rst_n, //asynchronous reset input, low active
input[7:0] tx_data, //data to send
input tx_data_valid, //data to be sent is valid
output reg tx_data_ready, //send ready
output tx_pin //serial data output
);
//calculates the clock cycle for baud rate
localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE;
//state machine code
localparam S_IDLE = 1;
localparam S_START = 2;//start bit
localparam S_SEND_BYTE = 3;//data bits
localparam S_STOP = 4;//stop bit
reg[2:0] state;
reg[2:0] next_state;
reg[15:0] cycle_cnt; //baud counter
reg[2:0] bit_cnt;//bit counter
reg[7:0] tx_data_latch; //latch data to send
reg tx_reg; //serial data output
assign tx_pin = tx_reg;
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
state <= S_IDLE;
else
state <= next_state;
end
always@(*)
begin
case(state)
S_IDLE:
if(tx_data_valid == 1'b1)
next_state <= S_START;
else
next_state <= S_IDLE;
S_START:
if(cycle_cnt == CYCLE - 1)
next_state <= S_SEND_BYTE;
else
next_state <= S_START;
S_SEND_BYTE:
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
next_state <= S_STOP;
else
next_state <= S_SEND_BYTE;
S_STOP:
if(cycle_cnt == CYCLE - 1)
next_state <= S_IDLE;
else
next_state <= S_STOP;
default:
next_state <= S_IDLE;
endcase
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
tx_data_ready <= 1'b0;
end
else if(state == S_IDLE)
if(tx_data_valid == 1'b1)
tx_data_ready <= 1'b0;
else
tx_data_ready <= 1'b1;
else if(state == S_STOP && cycle_cnt == CYCLE - 1)
tx_data_ready <= 1'b1;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
tx_data_latch <= 8'd0;
end
else if(state == S_IDLE && tx_data_valid == 1'b1)
tx_data_latch <= tx_data;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
bit_cnt <= 3'd0;
end
else if(state == S_SEND_BYTE)
if(cycle_cnt == CYCLE - 1)
bit_cnt <= bit_cnt + 3'd1;
else
bit_cnt <= bit_cnt;
else
bit_cnt <= 3'd0;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
cycle_cnt <= 16'd0;
else if((state == S_SEND_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
cycle_cnt <= 16'd0;
else
cycle_cnt <= cycle_cnt + 16'd1;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
tx_reg <= 1'b1;
else
case(state)
S_IDLE,S_STOP:
tx_reg <= 1'b1;
S_START:
tx_reg <= 1'b0;
S_SEND_BYTE:
tx_reg <= tx_data_latch[bit_cnt];
default:
tx_reg <= 1'b1;
endcase
end
endmodule

35
source/test.v

@ -1,35 +0,0 @@
`timescale 1ns / 1ns
//////////////////////////////////////////////////////////////////////////////////
// Module Name: vtf_led_test
//////////////////////////////////////////////////////////////////////////////////
module vtf_led_test;
// Inputs
reg sys_clk;
reg rst_n;
// Outputs
wire [3:0] led;
// Instantiate the Unit Under Test (UUT)
led_test uut (
.sys_clk(sys_clk),
.rst_n(rst_n),
.led(led)
);
initial begin
// Initialize Inputs
sys_clk = 0;
rst_n = 0;
// Wait 100 ns for global reset to finish
#1000;
rst_n = 1;
// Add stimulus here
#20000;
// $stop;
end
always #10 sys_clk = ~ sys_clk; //20ns
endmodule

30
source/test/test_baud_rate_gen.v

@ -0,0 +1,30 @@
`timescale 1ns / 1ns
module test_baud_rate_gen;
// Inputs
reg clk_50m;
reg rst_n;
wire rxclk_en;
wire txclk_en;
baud_rate_gen baud_rate_gen_impl (
.clk_50m (clk_50m),
.rxclk_en(rxclk_en),
.txclk_en(txclk_en)
);
initial begin
// Initialize Inputs
clk_50m = 0;
rst_n = 0;
#100;
rst_n = 1;
#15;
#100000;
$stop;
end
always #10 clk_50m = ~clk_50m; //20ns 50MHZ
endmodule

50
source/test/test_top.v

@ -0,0 +1,50 @@
`timescale 1ns / 1ns
module test_top;
// Inputs
reg clk_50m;
reg rst_n;
wire rxclk_en;
wire txclk_en;
wire [3:0] led;
wire test_io3;
wire test_io4;
wire test_io5;
wire test_io6;
wire test_io7;
wire test_io8;
wire test_io9;
wire test_io10;
wire test_io11;
Top top_impl (
.sys_clk(clk_50m),
.rst_n(rst_n),
.led(led),
.test_io3(test_io3),
.test_io4(test_io4),
.test_io5(test_io5),
.test_io6(test_io6),
.test_io7(test_io7),
.test_io8(test_io8),
.test_io9(test_io9),
.test_io10(test_io10),
.test_io11(test_io11)
);
initial begin
// Initialize Inputs
clk_50m = 0;
rst_n = 0;
#100;
rst_n = 1;
#15;
#300000;
$stop;
end
always #10 clk_50m = ~clk_50m; //20ns 50MHZ
endmodule

51
source/test/test_transmitter.v

@ -0,0 +1,51 @@
`timescale 1ns / 1ns
module test_transmitter;
// Inputs
reg clk_50m;
reg rst_n;
reg [7:0] din;
reg wr_en;
wire tx;
wire tx_busy;
wire rxclk_en;
wire txclk_en;
baud_rate_gen baud_rate_gen_impl (
.clk_50m (clk_50m),
.rxclk_en(rxclk_en),
.txclk_en(txclk_en)
);
transmitter transmitter_impl (
.din(din),
.wr_en(wr_en),
.clk_50m(clk_50m),
.clken(txclk_en),
.tx(tx),
.tx_busy(tx_busy)
);
initial begin
// Initialize Inputs
clk_50m = 0;
rst_n = 0;
#10;
rst_n = 1;
#11;
din = 8'h55;
wr_en = 1'b1;
#15;
wr_en = 0;
#300000;
$stop;
end
always #10 clk_50m = ~clk_50m; //20ns 50MHZ
endmodule

66
source/test/test_uart_reg_reader.v

@ -0,0 +1,66 @@
`timescale 1ns / 1ns
module test_uart_reg_reader;
// Inputs
reg clk_50m;
reg rst_n;
reg [31:0] reg_data;
wire [7:0] reg_add;
wire reg_add_valid;
reg uart_rx_pin;
wire uart_tx_pin;
uart_reg_reader uart_reg_reader_impl (
.clk(clk_50m),
.rst_n(rst_n),
.reg_data(reg_data),
.reg_add(reg_add),
.reg_add_valid(reg_add_valid),
.uart_rx_pin(uart_rx_pin),
.uart_tx_pin(uart_tx_pin)
);
initial begin
// Initialize Inputs
clk_50m = 0;
rst_n = 0;
reg_data = 0;
uart_rx_pin = 1;
#10;
rst_n = 1;
#1000;
uart_rx_pin = 1;
#(8.680 * 1000);
uart_rx_pin = 0;
#(8.680 * 1000);
uart_rx_pin = 1;
#(8.680 * 1000);
uart_rx_pin = 0;
#(8.680 * 1000);
uart_rx_pin = 1;
#(8.680 * 1000);
uart_rx_pin = 0;
#(8.680 * 1000);
uart_rx_pin = 1;
#(8.680 * 1000);
uart_rx_pin = 0;
#(8.680 * 1000);
uart_rx_pin = 1;
#(8.680 * 1000);
uart_rx_pin = 0;
#(8.680 * 1000);
uart_rx_pin = 1;
#(8.680 * 1000);
uart_rx_pin = 0;
#(8.680 * 1000);
uart_rx_pin = 1;
#(100 * 8.680 * 1000);
$stop;
end
always #10 clk_50m = ~clk_50m; //20ns 50MHZ
endmodule
Loading…
Cancel
Save