Browse Source

优化心率检测算法

master
zhaohe 1 year ago
parent
commit
bea8cac9ff
  1. 5
      app/src/app_service/ecg_service/algo/iflytop_simple_filter.c
  2. 128
      app/src/app_service/ecg_service/algo/qrs/HC_Chen_detect.c
  3. 53
      app/src/app_service/ecg_service/algo/qrs/HC_Chen_detect.h
  4. 373
      app/src/app_service/ecg_service/algo/qrs/Pan_Tompkins_detect.c
  5. 21
      app/src/app_service/ecg_service/algo/qrs/Pan_Tompkins_detect.h
  6. 30
      app/src/app_service/ecg_service/algo/qrs/QRS.h
  7. 93
      app/src/app_service/ecg_service/algo/qrs/So_Chen_detect.c
  8. 42
      app/src/app_service/ecg_service/algo/qrs/So_Chen_detect.h
  9. 41
      app/src/app_service/ecg_service/algo/zsimple_qrs.c
  10. 5
      app/src/app_service/ecg_service/algo/zsimple_qrs.h
  11. 2
      app/src/aproject_config/config.h

5
app/src/app_service/ecg_service/algo/iflytop_simple_filter.c

@ -170,11 +170,6 @@ float median_filter_update(median_filter_t *filter, float val) {
}
}
// 4 --> 1,2
// 3 --> 1
// 2 --> 0,1
// 1 --> 0
if (filter->numVal % 2 == 0) {
return (filter->temp[filter->numVal / 2 - 1] + filter->temp[filter->numVal / 2]) / 2;
} else {

128
app/src/app_service/ecg_service/algo/qrs/HC_Chen_detect.c

@ -0,0 +1,128 @@
#include "HC_Chen_detect.h"
bool HC_Chen_detect(float signal)
{
ecg_buff[ecg_buff_WR_idx++] = signal;
sample = ecg_buff_WR_idx;
ecg_buff_WR_idx %= (M+1);
/* High pass filtering */
if(number_iter < M){
// first fill buffer with enough points for HP filter
hp_sum += ecg_buff[ecg_buff_RD_idx];
hp_buff[hp_buff_WR_idx] = 0;
}
else{
hp_sum += ecg_buff[ecg_buff_RD_idx];
int tmp = ecg_buff_RD_idx - M;
if(tmp < 0){
tmp += M + 1;
}
hp_sum -= ecg_buff[tmp];
float y1 = 0;
float y2 = 0;
tmp = (ecg_buff_RD_idx - ((M+1)/2));
if(tmp < 0){
tmp += M + 1;
}
y2 = ecg_buff[tmp];
y1 = HP_CONSTANT * hp_sum;
hp_buff[hp_buff_WR_idx] = y2 - y1;
}
// done reading ECG buffer, increment position
ecg_buff_RD_idx++;
ecg_buff_RD_idx %= (M+1);
// done writing to HP buffer, increment position
hp_buff_WR_idx++;
hp_buff_WR_idx %= (N+1);
/* Low pass filtering */
// shift in new sample from high pass filter
lp_sum += hp_buff[hp_buff_RD_idx] * hp_buff[hp_buff_RD_idx];
if(number_iter < N){
// first fill buffer with enough points for LP filter
next_eval_pt = 0;
}
else{
// shift out oldest data point
int tmp = hp_buff_RD_idx - N;
if(tmp < 0){
tmp += N+1;
}
lp_sum -= hp_buff[tmp] * hp_buff[tmp];
next_eval_pt = lp_sum;
}
// done reading HP buffer, increment position
hp_buff_RD_idx++;
hp_buff_RD_idx %= (N+1);
/* Adapative thresholding beat detection */
// set initial threshold
if(number_iter < window_size) {
if(next_eval_pt > treshold) {
treshold = next_eval_pt;
}
++number_iter;
}
// check if detection hold off period has passed
if(triggered){
trig_time++;
if(trig_time >= DELAY_TIME){
triggered = false;
trig_time = 0;
}
}
// find if we have a new max
if(next_eval_pt > win_max) win_max = next_eval_pt;
// find if we are above adaptive threshold
if(next_eval_pt > treshold && !triggered) {
//result.push_back(true);
last_qrs_point = sample;
triggered = true;
return true;
}
else {
//result.push_back(false);
}
// adjust adaptive threshold using max of signal found
// in previous window
if(win_idx++ >= window_size){
// weighting factor for determining the contribution of
// the current peak value to the threshold adjustment
float gamma = (0.2f+0.15f)/2.0f; // 0.15~0.2
// forgetting factor -
// rate at which we forget old observations
float alpha = 0.01f + ( ((float) rand() / (float) RAND_MAX) * ((0.1f - 0.01f))); // 0~1
//float alpha = 1.0f*exp(-0.00005f*(sample - last_qrs_point));
treshold = alpha * gamma * win_max + (1.0f - alpha) * treshold;
// reset current window ind
win_idx = 0;
win_max = -10000000;
}
return false;
}

53
app/src/app_service/ecg_service/algo/qrs/HC_Chen_detect.h

@ -0,0 +1,53 @@
#ifndef __HC_CHEN__
#define __HC_CHEN__
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <stdint.h>
#include "QRS.h"
#define M 9
#define N 54//SAMPLING_RATE * 0.15f
static const uint32_t window_size = SAMPLING_RATE;
static const float HP_CONSTANT = ((float) 1.0f / (float) M);
// circular buffer for input ecg signal
// we need to keep a history of M + 1 samples for HP filter
static float ecg_buff[M + 1] = {0};
static int ecg_buff_WR_idx = 0;
static int ecg_buff_RD_idx = 0;
// circular buffer for input ecg signal
// we need to keep a history of N+1 samples for LP filter
static float hp_buff[N + 1] = {0};
static int hp_buff_WR_idx = 0;
static int hp_buff_RD_idx = 0;
// LP filter outputs a single point for every input point
// This goes straight to adaptive filtering for eval
static float next_eval_pt = 0;
// running sums for HP and LP filters, values shifted in FILO
static float hp_sum = 0;
static float lp_sum = 0;
// parameters for adaptive thresholding
static float treshold = 0;
static bool triggered = false;
static int trig_time = 0;
static float win_max = 0;
static int win_idx = 0;
static int number_iter = 0;
static int sample = 0;
static int last_qrs_point = 0;
static const int DELAY_TIME = 180;//window_size * 0.5f;
extern bool HC_Chen_detect(float);
#endif

373
app/src/app_service/ecg_service/algo/qrs/Pan_Tompkins_detect.c

@ -0,0 +1,373 @@
#include "Pan_Tompkins_detect.h"
/* y(nT) = 1.875y(nT ¨C T) ¨C 0.9219y(nT ¨C 2T) + x (nT) ¨C x(nT ¨C 2T) */
int TwoPoleRecursive(int data)
{
static int xnt, xm1, xm2, ynt, ym1, ym2 = 0;
xnt = data;
ynt = (ym1 + (ym1 >> 1) + (ym1 >> 2) + (ym1 >> 3)) + // 1.875 = 1 + 1/2 + 1/4 + 1/8
(((ym2 >> 1) + (ym2 >> 2) + (ym2 >> 3) + (ym2 >> 5) + (ym2 >> 6)) + xnt - xm2); // 0.916 = 1 + 1/2 + 1/4 + 1/8 + 1/32 + 1/64
xm2 = xm1;
xm1 = xnt;
xm2 = ym1;
ym2 = ym1;
ym1 = ynt;
return ynt;
}
/* y(nT) = 2y(nT ¨C T) ¨C y(nT ¨C 2T) + x(nT) ¨C 2x(nT ¨C 6T) + x(nT ¨C 12T) */
int LowPassFilter(int data)
{
static int y1 = 0, y2 = 0, x[26], n = 12;
int y0;
x[n] = x[n + 13] = data;
y0 = (y1 << 1) - y2 + x[n] - (x[n + 6] << 1) + x[n + 12];
y2 = y1;
y1 = y0;
y0 >>= 5;
if(--n < 0){
n = 12;
}
return y0;
}
/* p(nT) = x(nT ¨C 16T) ¨C 32 [y(nT ¨C T) + x(nT) ¨C x(nT ¨C 32T)] */
int HighPassFilter(int data)
{
static int y1 = 0, x[66], n = 32;
int y0;
x[n] = x[n + 33] = data;
y0 = y1 + x[n] - x[n + 32];
y1 = y0;
if(--n < 0){
n = 32;
}
return (x[n + 16] - (y0 >> 5));
}
/* y = 1/8 (2x( nT) + x( nT - T) - x( nT - 3T) - 2x( nT - 4T)) */
int Derivative(int data)
{
int y;
static int x_derv[4];
y = (data << 1) + x_derv[3] - x_derv[1] - ( x_derv[0] << 1);
y >>= 3;
for(int i = 0; i < 3; ++i){
x_derv[i] = x_derv[i + 1];
}
x_derv[3] = data;
return y;
}
int Squar(int data)
{
return (data * data);
}
/* y(nT) = 1/N [x(nT ¨C (N ¨C 1)T) + x(nT ¨C (N ¨C 2)T) +...+ x(nT)] */
int MovingWindowIntegral(int data)
{
//static const int WINDOW_SIZE = SAMPLING_RATE * 0.2;
#define WINDOW_SIZE 72
static int x[WINDOW_SIZE], ptr = 0;
static long sum = 0;
long ly;
int y;
if(++ptr == WINDOW_SIZE){
ptr = 0;
}
sum -= x[ptr];
sum += data;
x[ptr] = data;
ly = sum >> 5;
uint32_t MAX_INTEGRAL = 4096;//32400;
if(ly > MAX_INTEGRAL){
y = MAX_INTEGRAL;
}
else{
y = (int)ly;
}
return (y);
}
SignalPoint ThresholdCalculate(int sample,float value,int bandpass,int square,int integral)
{
//static const int QRS_TIME = SAMPLING_RATE * 0.1;
//static const int SEARCH_BACK_TIME = SAMPLING_RATE * 1.66f;
#define QRS_TIME 36
#define SEARCH_BACK_TIME 598
static int bandpass_buffer[SEARCH_BACK_TIME],integral_buffer[SEARCH_BACK_TIME];
static SignalPoint peak_buffer[SEARCH_BACK_TIME];
static int square_buffer[QRS_TIME];
static long unsigned last_qrs = 0, last_slope = 0, current_slope = 0;
static int peak_i = 0, peak_f = 0, threshold_i1 = 0, threshold_i2 = 0, threshold_f1 = 0, threshold_f2 = 0, spk_i = 0, spk_f = 0, npk_i = 0, npk_f = 0;
static bool qrs, regular = true, prev_regular;
static int rr1[8]={0}, rr2[8]={0}, rravg1, rravg2, rrlow = 0, rrhigh = 0, rrmiss = 0;
SignalPoint result;
result.index = -1;
peak_buffer[sample%SEARCH_BACK_TIME].index = sample;
peak_buffer[sample%SEARCH_BACK_TIME].value = value;
bandpass_buffer[sample%SEARCH_BACK_TIME] = bandpass;
integral_buffer[sample%SEARCH_BACK_TIME] = integral;
square_buffer[sample%QRS_TIME] = square;
// If the current signal is above one of the thresholds (integral or filtered signal), it's a peak candidate.
if(integral >= threshold_i1 || bandpass >= threshold_f1){
peak_i = integral;
peak_f = bandpass;
}
// If both the integral and the signal are above their thresholds, they're probably signal peaks.
if((integral >= threshold_i1) && (bandpass >= threshold_f1)){
// There's a 200ms latency. If the new peak respects this condition, we can keep testing.
if(sample > last_qrs + SAMPLING_RATE*0.2f){
//if(sample > last_qrs + (SAMPLING_RATE*0.2f)){
// If it respects the 200ms latency, but it doesn't respect the 360ms latency, we check the slope.
if(sample <= last_qrs + (long unsigned int)(0.36*SAMPLING_RATE)){
// The squared slope is "M" shaped. So we have to check nearby samples to make sure we're really looking
// at its peak value, rather than a low one.
int current = sample;
current_slope = 0;
for(int j = current - QRS_TIME; j <= current; ++j){
if(square_buffer[j%QRS_TIME] > current_slope){
current_slope = square_buffer[j%QRS_TIME];
}
}
//current_slope = square;
if(current_slope <= (int)(last_slope/2)){
qrs = false;
//return qrs;
}
else{
spk_i = 0.125*peak_i + 0.875*spk_i;
threshold_i1 = npk_i + 0.25*(spk_i - npk_i);
threshold_i2 = 0.5*threshold_i1;
spk_f = 0.125*peak_f + 0.875*spk_f;
threshold_f1 = npk_f + 0.25*(spk_f - npk_f);
threshold_f2 = 0.5*threshold_f1;
last_slope = current_slope;
qrs = true;
result.value = value;
result.index = sample;
}
}
// If it was above both thresholds and respects both latency periods, it certainly is a R peak.
else{
int current = sample;
current_slope = 0;
for(int j = current - QRS_TIME; j <= current; ++j){
if(square_buffer[j%QRS_TIME] > current_slope){
current_slope = square_buffer[j%QRS_TIME];
}
}
//current_slope = square;
spk_i = 0.125*peak_i + 0.875*spk_i;
threshold_i1 = npk_i + 0.25*(spk_i - npk_i);
threshold_i2 = 0.5*threshold_i1;
spk_f = 0.125*peak_f + 0.875*spk_f;
threshold_f1 = npk_f + 0.25*(spk_f - npk_f);
threshold_f2 = 0.5*threshold_f1;
last_slope = current_slope;
qrs = true;
result.value = value;
result.index = sample;
}
}
// If the new peak doesn't respect the 200ms latency, it's noise. Update thresholds and move on to the next sample.
else{
peak_i = integral;
npk_i = 0.125*peak_i + 0.875*npk_i;
threshold_i1 = npk_i + 0.25*(spk_i - npk_i);
threshold_i2 = 0.5*threshold_i1;
peak_f = bandpass;
npk_f = 0.125*peak_f + 0.875*npk_f;
threshold_f1 = npk_f + 0.25*(spk_f - npk_f);
threshold_f2 = 0.5*threshold_f1;
qrs = false;
/*outputSignal[current] = qrs;
if (sample > DELAY + BUFFSIZE)
output(outputSignal[0]);
continue;*/
//return qrs;
return result;
}
}
// If a QRS complex was detected, the RR-averages must be updated.
if(qrs){
// Add the newest RR-interval to the buffer and get the new average.
rravg1 = 0;
for (int i = 0; i < 7; ++i){
rr1[i] = rr1[i+1];
rravg1 += rr1[i];
}
rr1[7] = sample - last_qrs;
last_qrs = sample;
rravg1 += rr1[7];
rravg1 *= 0.125;
// If the newly-discovered RR-average is normal, add it to the "normal" buffer and get the new "normal" average.
// Update the "normal" beat parameters.
if ( (rr1[7] >= rrlow) && (rr1[7] <= rrhigh) ){
rravg2 = 0;
for (int i = 0; i < 7; ++i){
rr2[i] = rr2[i+1];
rravg2 += rr2[i];
}
rr2[7] = rr1[7];
rravg2 += rr2[7];
rravg2 *= 0.125;
rrlow = 0.92*rravg2;
rrhigh = 1.16*rravg2;
rrmiss = 1.66*rravg2;
}
prev_regular = regular;
if(rravg1 == rravg2){
regular = true;
}
// If the beat had been normal but turned odd, change the thresholds.
else{
regular = false;
if (prev_regular){
threshold_i1 /= 2;
threshold_f1 /= 2;
}
}
}
// If no R-peak was detected, it's important to check how long it's been since the last detection.
else{
int current = sample;
// If no R-peak was detected for too long, use the lighter thresholds and do a back search.
// However, the back search must respect the 200ms limit and the 360ms one (check the slope).
if((sample - last_qrs > (long unsigned int)rrmiss) && (sample > last_qrs + SAMPLING_RATE*0.2f)){
//if((sample - last_qrs > (long unsigned int)rrmiss) && (sample > last_qrs + (SAMPLING_RATE*0.2f))){
// If over SEARCH_BACK_TIME of QRS complex
if((sample - last_qrs) > SEARCH_BACK_TIME){
last_qrs = sample;
//return result;
}
int qrs_last_index = 0; // Last point of QRS complex
for(int i = current - (sample - last_qrs) + SAMPLING_RATE*0.2f; i < (long unsigned int)current; ++i){
//for(int i = current - (sample - last_qrs) + (SAMPLING_RATE*0.2f); i < (long unsigned int)current; ++i){
if((integral_buffer[i%SEARCH_BACK_TIME] > threshold_i2) && (bandpass_buffer[i%SEARCH_BACK_TIME] > threshold_f2)){
current_slope = 0;
for(int j = current - QRS_TIME; j <= current; ++j){
if(square_buffer[j%QRS_TIME] > current_slope){
current_slope = square_buffer[j%QRS_TIME];
}
}
//current_slope = square;
if((current_slope < (int)(last_slope/2)) && (i + sample) < last_qrs + 0.36*last_qrs){
qrs = false;
}
else if(i - last_qrs > 550){
peak_i = integral_buffer[i%SEARCH_BACK_TIME];
peak_f = bandpass_buffer[i%SEARCH_BACK_TIME];
spk_i = 0.25*peak_i+ 0.75*spk_i;
spk_f = 0.25*peak_f + 0.75*spk_f;
threshold_i1 = npk_i + 0.25*(spk_i - npk_i);
threshold_i2 = 0.5*threshold_i1;
last_slope = current_slope;
threshold_f1 = npk_f + 0.25*(spk_f - npk_f);
threshold_f2 = 0.5*threshold_f1;
// If a signal peak was detected on the back search, the RR attributes must be updated.
// This is the same thing done when a peak is detected on the first try.
//RR Average 1
rravg1 = 0;
for(int j = 0; j < 7; ++j){
rr1[j] = rr1[j+1];
rravg1 += rr1[j];
}
rr1[7] = sample - (current - i) - last_qrs;
qrs = true;
qrs_last_index = i;
last_qrs = sample - (current - i);
rravg1 += rr1[7];
rravg1 *= 0.125;
//RR Average 2
if((rr1[7] >= rrlow) && (rr1[7] <= rrhigh)){
rravg2 = 0;
for (int i = 0; i < 7; ++i){
rr2[i] = rr2[i+1];
rravg2 += rr2[i];
}
rr2[7] = rr1[7];
rravg2 += rr2[7];
rravg2 *= 0.125;
rrlow = 0.92*rravg2;
rrhigh = 1.16*rravg2;
rrmiss = 1.66*rravg2;
}
prev_regular = regular;
if(rravg1 == rravg2){
regular = true;
}
else{
regular = false;
if(prev_regular){
threshold_i1 /= 2;
threshold_f1 /= 2;
}
}
break;
}
}
}
if(qrs){
//outputSignal[current] = false;
//outputSignal[i] = true;
//if (sample > DELAY + BUFFSIZE)
//output(outputSignal[0]);
//continue;
//return qrs;
return peak_buffer[qrs_last_index%SEARCH_BACK_TIME];
}
}
// Definitely no signal peak was detected.
if(!qrs){
// If some kind of peak had been detected, then it's certainly a noise peak. Thresholds must be updated accordinly.
if((integral >= threshold_i1) || (bandpass >= threshold_f1)){
peak_i = integral;
npk_i = 0.125*peak_i + 0.875*npk_i;
threshold_i1 = npk_i + 0.25*(spk_i - npk_i);
threshold_i2 = 0.5*threshold_i1;
peak_f = bandpass;
npk_f = 0.125*peak_f + 0.875*npk_f;
threshold_f1 = npk_f + 0.25*(spk_f - npk_f);
threshold_f2 = 0.5*threshold_f1;
}
}
}
return result;
}

21
app/src/app_service/ecg_service/algo/qrs/Pan_Tompkins_detect.h

@ -0,0 +1,21 @@
#ifndef __PAN_TOMPKINS__
#define __PAN_TOMPKINS__
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <math.h>
#include "QRS.h"
extern int TwoPoleRecursive(int);
extern int LowPassFilter(int);
extern int HighPassFilter(int);
extern int Derivative(int);
extern int Squar(int);
extern int MovingWindowIntegral(int);
extern SignalPoint ThresholdCalculate(int,float,int,int,int);
#endif

30
app/src/app_service/ecg_service/algo/qrs/QRS.h

@ -0,0 +1,30 @@
#pragma once
#include <stdint.h>
//const uint32_t SAMPLING_RATE = 1000;
#define SAMPLING_RATE 360
typedef struct
{
float value;
int32_t index;
}SignalPoint;
enum
{
NOTQRS, /* not-QRS (not a getann/putann code) */
NORMAL, /* normal beat */
LBBB, /* left bundle branch block beat */
RBBB, /* right bundle branch block beat */
ABERR, /* aberrated atrial premature beat */
PVC, /* premature ventricular contraction */
FUSION, /* fusion of ventricular and normal beat */
NPC, /* nodal (junctional) premature beat */
APC, /* atrial premature contraction */
SVPB, /* premature or ectopic supraventricular beat */
VESC, /* ventricular escape beat */
NESC, /* nodal (junctional) escape beat */
PACE, /* paced beat */
UNKNOWN, /* unclassifiable beat */
NOISE, /* signal quality change */
ARFCT /* isolated QRS-like artifact */
};

93
app/src/app_service/ecg_service/algo/qrs/So_Chen_detect.c

@ -0,0 +1,93 @@
#include "So_Chen_detect.h"
SignalPoint So_Chen_detect(SignalPoint signal,int initial_point,float threshold_parameter,float filter_parameter)
{
/* init slop window pool, size = 5 */
if(signal_window_count < signal_window_size){
signal_window[signal_window_count%signal_window_size] = signal;
++signal_window_count;
SignalPoint value;
value.index = -1;
return value;
}
else{
signal_window[signal_window_count%signal_window_size] = signal;
++signal_window_count;
SignalPoint value;
}
/* calculate slop */
uint32_t idx_for_slop = signal_window_count-2;
slop.value = ( (-2.0f * signal_window[(idx_for_slop-2)%signal_window_size].value) - signal_window[(idx_for_slop-1)%signal_window_size].value + signal_window[(idx_for_slop+1)%signal_window_size].value + (2.0f * signal_window[(idx_for_slop+2)%signal_window_size].value) );
slop.index = signal_window[idx_for_slop%signal_window_size].index;
/* init maxi */
if(!so_chen_init_flag){
if(!maxi_init){
max.value = 0;
max.index = -1;
maxi = slop.value;
maxi_init = true;
}
++init_count;
if(init_count > initial_point){
so_chen_init_flag = true;
/* calculate slop threshold */
slop_threshold = threshold_parameter / 16.0f * maxi;
}
if(slop.value > maxi){
maxi = slop.value;
}
SignalPoint value;
value.index = -1;
return value;
}
/* detect QRS complex on set */
if(qrs_on_set_flag && (signal_window_count - last_point > enhanced_point)){
if(!max_init){
max = signal_window[(idx_for_slop)%signal_window_size];
max_init = true;
}
if(signal_window[(idx_for_slop)%signal_window_size].value > max.value){
max = signal_window[(idx_for_slop)%signal_window_size];
max_slop = slop;
}
else if(signal_window[(idx_for_slop)%signal_window_size].value < max.value){
last_point = signal_window_count;
qrs_on_set_flag = false;
max_init = false;
maxi = ((abs(max.value - qrs_onset_point.value) - maxi) / filter_parameter) + maxi;
slop_threshold = threshold_parameter / 16.0f * maxi;
last_maxi = maxi;
return max;
}
}
else{
if(slop.value > slop_threshold){
++qrs_on_set_count;
}
else if(qrs_on_set_count){
qrs_on_set_count = 0;
}
if(qrs_on_set_count >= 2){ // is QRS complex on set
qrs_on_set_flag = true;
qrs_on_set_count = 0;
qrs_onset_idx = idx_for_slop;
qrs_onset_point = signal;
}
else if((signal_window_count - last_point > enhanced_point * 2) && (slop_threshold > 0)){ //decay threshold
slop_threshold -= slop.value;
if((signal_window_count - last_point > SAMPLING_RATE * 3)){ //threshold oscillating
slop_threshold -= ((signal_window_count - last_point) >> (int)threshold_parameter);
}
}
}
SignalPoint value;
value.index = -1;
return value;
}

42
app/src/app_service/ecg_service/algo/qrs/So_Chen_detect.h

@ -0,0 +1,42 @@
#ifndef __SO_AND_CHEN__
#define __SO_AND_CHEN__
#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#include "QRS.h"
static const uint32_t enhanced_point = SAMPLING_RATE * 0.35f;
#define signal_window_size 5
static SignalPoint signal_window[signal_window_size];
static uint32_t signal_window_count = 0;
static SignalPoint slop;
static bool so_chen_init_flag = false;
static uint32_t init_count = 0;
static bool maxi_init = false;
static float maxi;
static float slop_threshold = 0;
static SignalPoint qrs_onset_point;
static int qrs_on_set_count = 0;
static int qrs_onset_idx = 0;
static bool qrs_on_set_flag = false;
static SignalPoint max;
static SignalPoint max_slop;
static bool max_init = false;
static float last_maxi = 0;
static uint32_t last_point = 0;
SignalPoint So_Chen_detect(SignalPoint,int,float,float);
#endif

41
app/src/app_service/ecg_service/algo/zsimple_qrs.c

@ -1,5 +1,31 @@
#include "zsimple_qrs.h"
void prv_zsimple_qrs_push_heartrate(zsimple_qrs_t* p_qrs, float heartrate) {
memmove(p_qrs->heartrate_cache, p_qrs->heartrate_cache + 1, sizeof(p_qrs->heartrate_cache[0]) * (HEART_RATE_CACHE_SIZE - 1));
p_qrs->heartrate_cache[HEART_RATE_CACHE_SIZE - 1] = heartrate;
}
void prv_zsimple_qrs_analys_heartrate(zsimple_qrs_t* p_qrs, float* diffavg) {
float avg = 0;
float sum = 0;
for (int i = 0; i < HEART_RATE_CACHE_SIZE; i++) {
sum += p_qrs->heartrate_cache[i];
}
avg = sum / HEART_RATE_CACHE_SIZE;
float diffsum = 0;
for (int i = 0; i < HEART_RATE_CACHE_SIZE; i++) {
float diff = (p_qrs->heartrate_cache[i] - avg);
if (diff < 0) {
diff = -diff;
}
diffsum += diff;
}
*diffavg = diffsum / HEART_RATE_CACHE_SIZE;
}
void zsimple_qrs_init(zsimple_qrs_t* p_qrs, float sample_rate_s) {
p_qrs->last_peak_pos = 0;
p_qrs->sample_rate_s = sample_rate_s;
@ -16,8 +42,9 @@ void zsimple_qrs_clear(zsimple_qrs_t* p_qrs) {
p_qrs->index = 0;
p_qrs->hasfindpeak = false;
median_filter_init(&p_qrs->heart_rate_filter, 10);
memset(p_qrs->heartrate_cache, 0, sizeof(p_qrs->heartrate_cache));
}
void zsimple_qrs_process_data(zsimple_qrs_t* p_qrs, int32_t indata, float min, float max, float refavg) { //
p_qrs->index++;
@ -30,7 +57,17 @@ void zsimple_qrs_process_data(zsimple_qrs_t* p_qrs, int32_t indata, float min, f
p_qrs->hasfindpeak = true;
p_qrs->last_peak_pos = p_qrs->index;
float heartrate = 60 / peak_interval_s;
p_qrs->heartrate = median_filter_update(&p_qrs->heart_rate_filter, heartrate);
prv_zsimple_qrs_push_heartrate(p_qrs, heartrate);
float heartrate_af_median = median_filter_update(&p_qrs->heart_rate_filter, heartrate);
float diffavg = 0;
prv_zsimple_qrs_analys_heartrate(p_qrs, &diffavg);
if (diffavg < 10) {
p_qrs->heartrate = heartrate_af_median;
}else{
p_qrs->heartrate = 0;
}
}
}
} else {

5
app/src/app_service/ecg_service/algo/zsimple_qrs.h

@ -16,6 +16,8 @@
#define HEART_RATE_BUF_SIZE 10
#define HEART_RATE_CACHE_SIZE 5
typedef struct {
int32_t last_peak_pos;
float sample_rate_s;
@ -24,6 +26,9 @@ typedef struct {
bool hasfindpeak;
median_filter_t heart_rate_filter;
float heartrate_cache[HEART_RATE_CACHE_SIZE];
} zsimple_qrs_t;
void zsimple_qrs_init(zsimple_qrs_t* p_qrs, float sample_rate_s);

2
app/src/aproject_config/config.h

@ -7,7 +7,7 @@
#define CATEGORY "M1003" // 데돔젬
#define MANUFACTURER_NAME "iflytop"
#define FIRMWARE_VERSION (505)
#define FIRMWARE_VERSION (506)
#define BLESTACK_VERSION 1
#define BOOTLOADER_VERSION 1
#define HARDWARE_VERSION (2)

Loading…
Cancel
Save