You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

392 lines
12 KiB

#include "zble_module.h"
#include "zdatachannel_service.h"
#include "znordic.h"
//
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//
#include <math.h>
#include "app_scheduler.h"
#include "znordic.h"
#if defined(UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined(UARTE_PRESENT)
#include "nrf_uarte.h"
#endif
#if 0
int main() {
one_conduction_main();
return 0;
}
#else
#include "nrfx_timer.h"
ZDATACHANNEL_DEF(m_zhrs, 2 /*优先级*/, 1 /*client num*/); // 蓝牙服务
static const nrfx_timer_t m_timer = NRFX_TIMER_INSTANCE(1); /**< Timer used for channel sweeps and tx with duty cycle. */
#define PI 3.14159265358979323846
/********************************************************************************************************
* LOW PASS FILTER
********************************************************************************************************/
typedef struct {
float coef[2];
float v_out[2];
} LPFilter;
void LPFilter_Init(LPFilter *filter, float cutoffFreqHz, float sampleTimeS);
float LPFilter_Update(LPFilter *filter, float v_in);
/********************************************************************************************************
* HIGH PASS FILTER
********************************************************************************************************/
typedef struct {
float coef;
float v_out[2];
float v_in[2];
} HPFilter;
void HPFilter_Init(HPFilter *filter, float cutoffFreqHz, float sampleTimeS);
float HPFilter_Update(HPFilter *filter, float v_in);
/********************************************************************************************************
* BAND PASS FILTER
********************************************************************************************************/
typedef struct {
LPFilter lpf;
HPFilter hpf;
float out_in;
} PBFilter;
void PBFilter_Init(PBFilter *filter, float HPF_cutoffFreqHz, float LPF_cutoffFreqHz, float sampleTimeS);
float PBFilter_Update(PBFilter *filter, float v_in);
/********************************************************************************************************
* NOTCH FILTER
********************************************************************************************************/
typedef struct {
float alpha;
float beta;
float vin[3];
float vout[3];
} NOTCHFilter;
void NOTCHFilter_Init(NOTCHFilter *filter, float centerFreqHz, float notchWidthHz, float sampleTimeS);
float NOTCHFilter_Update(NOTCHFilter *filter, float vin);
#define PI 3.141592653
/********************************************************************************************************
* LOW PASS FILTER
********************************************************************************************************/
void LPFilter_Init(LPFilter *filter, float cutoffFreqHz, float sampleTimeS) {
float RC = 0.0;
RC = 1.0 / (2 * PI * cutoffFreqHz);
filter->coef[0] = sampleTimeS / (sampleTimeS + RC);
filter->coef[1] = RC / (sampleTimeS + RC);
filter->v_out[0] = 0.0;
filter->v_out[1] = 0.0;
}
float LPFilter_Update(LPFilter *filter, float v_in) {
filter->v_out[1] = filter->v_out[0];
filter->v_out[0] = (filter->coef[0] * v_in) + (filter->coef[1] * filter->v_out[1]);
return (filter->v_out[0]);
}
/********************************************************************************************************
* HIGH PASS FILTER
********************************************************************************************************/
void HPFilter_Init(HPFilter *filter, float cutoffFreqHz, float sampleTimeS) {
float RC = 0.0;
RC = 1.0 / (2 * PI * cutoffFreqHz);
filter->coef = RC / (sampleTimeS + RC);
filter->v_in[0] = 0.0;
filter->v_in[1] = 0.0;
filter->v_out[0] = 0.0;
filter->v_out[1] = 0.0;
}
float HPFilter_Update(HPFilter *filter, float v_in) {
filter->v_in[1] = filter->v_in[0];
filter->v_in[0] = v_in;
filter->v_out[1] = filter->v_out[0];
filter->v_out[0] = filter->coef * (filter->v_in[0] - filter->v_in[1] + filter->v_out[1]);
return (filter->v_out[0]);
}
/********************************************************************************************************
* BAND PASS FILTER
********************************************************************************************************/
void PBFilter_Init(PBFilter *filter, float HPF_cutoffFreqHz, float LPF_cutoffFreqHz, float sampleTimeS) {
LPFilter_Init(&filter->lpf, LPF_cutoffFreqHz, sampleTimeS);
HPFilter_Init(&filter->hpf, HPF_cutoffFreqHz, sampleTimeS);
filter->out_in = 0.0;
}
float PBFilter_Update(PBFilter *filter, float v_in) {
filter->out_in = HPFilter_Update(&filter->hpf, v_in);
filter->out_in = LPFilter_Update(&filter->lpf, filter->out_in);
return (filter->out_in);
}
/********************************************************************************************************
* NOTCH FILTER
********************************************************************************************************/
void NOTCHFilter_Init(NOTCHFilter *filter, float centerFreqHz, float notchWidthHz, float sampleTimeS) {
// filter frequency to angular (rad/s)
float w0_rps = 2.0 * PI * centerFreqHz;
float ww_rps = 2.0 * PI * notchWidthHz;
// pre warp center frequency
float w0_pw_rps = (2.0 / sampleTimeS) * tanf(0.5 * w0_rps * sampleTimeS);
// computing filter coefficients
filter->alpha = 4.0 + w0_rps * w0_pw_rps * sampleTimeS * sampleTimeS;
filter->beta = 2.0 * ww_rps * sampleTimeS;
// clearing input and output buffers
for (uint8_t n = 0; n < 3; n++) {
filter->vin[n] = 0;
filter->vout[n] = 0;
}
}
float NOTCHFilter_Update(NOTCHFilter *filter, float vin) {
// shifting samples
filter->vin[2] = filter->vin[1];
filter->vin[1] = filter->vin[0];
filter->vout[2] = filter->vout[1];
filter->vout[1] = filter->vout[0];
filter->vin[0] = vin;
// compute new output
filter->vout[0] = (filter->alpha * filter->vin[0] + 2.0 * (filter->alpha - 8.0) * filter->vin[1] + filter->alpha * filter->vin[2] - (2.0f * (filter->alpha - 8.0) * filter->vout[1] + (filter->alpha - filter->beta) * filter->vout[2])) / (filter->alpha + filter->beta);
return (filter->vout[0]);
}
/*******************************************************************************
* MAIN *
*******************************************************************************/
static void zdatachannel_data_handler(zdatachannel_evt_t *p_evt) {
/**
* @brief
*/
if (p_evt->type == ZDATACHANNEL_EVT_RX_DATA) {
}
}
static void on_service_init(void) {
ZLOGI("init zdatachannel service");
zdatachannel_init_t zdatachannle_init;
memset(&zdatachannle_init, 0, sizeof(zdatachannle_init));
zdatachannle_init.data_handler = zdatachannel_data_handler;
ZERROR_CHECK(zdatachannel_init(&m_zhrs, &zdatachannle_init));
}
int16_t adc_val_cache0[5] = {0};
int16_t adc_val_cache1[5] = {0};
int16_t adc_val_cache2[5] = {0};
int16_t adc_val_cache3[5] = {0};
int adc_val_index = 0;
void sendpacket_to_pc() {
uint8_t data[255];
// adc_val_cache[0] = 1;
// adc_val_cache[1] = 2;
// adc_val_cache[2] = 3;
// adc_val_cache[3] = 4;
// adc_val_cache[4] = 5;
for (int i = 0; i < adc_val_index; i++) {
if (adc_val_cache0[i] > 4096) {
adc_val_cache0[i] = 4096;
}
if (adc_val_cache1[i] > 4096) {
adc_val_cache1[i] = 4096;
}
if (adc_val_cache2[i] > 4096) {
adc_val_cache2[i] = 4096;
}
if (adc_val_cache3[i] > 4096) {
adc_val_cache3[i] = 4096;
}
if (adc_val_cache0[i] < 0) {
adc_val_cache0[i] = 0;
}
if (adc_val_cache1[i] < 0) {
adc_val_cache1[i] = 0;
}
if (adc_val_cache2[i] < 0) {
adc_val_cache2[i] = 0;
}
if (adc_val_cache3[i] < 0) {
adc_val_cache3[i] = 0;
}
}
for (int i = 0; i < adc_val_index; i++) {
data[i * 12 + 0] = 0xA2;
data[i * 12 + 1] = 0x2;
data[i * 12 + 2] = adc_val_cache0[i] & 0xff;
data[i * 12 + 3] = adc_val_cache0[i] >> 8 & 0xff;
data[i * 12 + 4] = adc_val_cache1[i] & 0xff;
data[i * 12 + 5] = adc_val_cache1[i] >> 8 & 0xff;
data[i * 12 + 6] = adc_val_cache2[i] & 0xff;
data[i * 12 + 7] = adc_val_cache2[i] >> 8 & 0xff;
data[i * 12 + 8] = adc_val_cache3[i] & 0xff;
data[i * 12 + 9] = adc_val_cache3[i] >> 8 & 0xff;
data[i * 12 + 10] = 0x2;
data[i * 12 + 11] = 0xA2;
}
zdatachannel_data_send2(data, 12 * adc_val_index);
}
#if 1
#if 0
// 定义一阶高通滤波器结构体
typedef struct {
float alpha; // 时间常数
float previous_output; // 上一时刻的输出
} HighPassFilter;
HighPassFilter myFilter;
// 初始化滤波器
void initializeFilter(HighPassFilter* filter, float alpha) {
filter->alpha = alpha;
filter->previous_output = 0.0;
}
// 一阶高通滤波函数
float filterValue(HighPassFilter* filter, float input) {
// 计算输出
float output = filter->alpha * (input - filter->previous_output) + filter->previous_output;
// 更新上一次的输出
filter->previous_output = output;
return output;
}
#endif
#endif
NOTCHFilter notchfilter;
LPFilter lowpassfilter;
static void nrfx_timer_event_handler(nrf_timer_event_t event_type, void *p_context) { //
// raw data
int16_t val = SingleLeadECG_ecg_plod_get_ecg_val(); //
adc_val_cache0[adc_val_index] = val;
int16_t notchf_val = NOTCHFilter_Update(&notchfilter, val);
adc_val_cache1[adc_val_index] = notchf_val;
int16_t lowpassf_val = LPFilter_Update(&lowpassfilter, notchf_val);
adc_val_cache2[adc_val_index] = lowpassf_val;
// val = low_pass_filter(val);
/*******************************************************************************
* 显示数据计算并赋值 *
*******************************************************************************/
adc_val_index++;
if (adc_val_index >= 5) {
if (zdatachannel_is_connected()) {
sendpacket_to_pc();
} else {
}
adc_val_index = 0;
}
static int cnt;
static bool state;
cnt++;
if (zdatachannel_is_connected()) {
SingleLeadECG_led_green_set_state(1);
} else {
if (cnt % 20 == 0) {
SingleLeadECG_led_green_set_state(state);
state = !state;
}
}
}
int main() { //
APP_SCHED_INIT(APP_TIMER_SCHED_EVENT_DATA_SIZE, 20);
// low_pass_filter_init();
// initializeFilter(&myFilter, alpha);
NOTCHFilter_Init(&notchfilter, 50, 30, 0.002);
LPFilter_Init(&lowpassfilter, 200, 0.002);
znordic_init();
NRF_LOG_INFO("compile time :%s", __TIME__);
ztm_t tm;
static zble_module_cfg_t cfg = //
{
.deviceName = "OneLeadTest",
.on_service_init = on_service_init,
};
zble_module_init(&cfg);
SingleLeadECG_adc_module_init();
SingleLeadECG_led_init();
SingleLeadECG_led_green_set_state(0);
zble_module_start_adv();
/*******************************************************************************
* 定时器初始化 *
*******************************************************************************/
/**
* @brief 初始化定时器
*/
nrfx_err_t err;
nrfx_timer_config_t timer_cfg = {
.frequency = NRF_TIMER_FREQ_500kHz,
.mode = NRF_TIMER_MODE_TIMER,
.bit_width = NRF_TIMER_BIT_WIDTH_24,
.p_context = NULL,
.interrupt_priority = NRFX_TIMER_DEFAULT_CONFIG_IRQ_PRIORITY,
};
err = nrfx_timer_init(&m_timer, &timer_cfg, nrfx_timer_event_handler);
if (err != NRFX_SUCCESS) {
NRF_LOG_ERROR("nrfx_timer_init failed with: %d\n", err);
}
uint32_t timer_ticks = nrfx_timer_ms_to_ticks(&m_timer, 2); // 500HZ
nrfx_timer_extended_compare(&m_timer, NRF_TIMER_CC_CHANNEL0, timer_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);
nrfx_timer_enable(&m_timer);
znordic_loop();
}
#endif