SSD1312

Advance Information

128 x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Appendix: IC Revision history of SSD1312 Specification

Version	Change Items	Effective Date
1.0	1 st Release	17-Jan-19

confidencial to confide correction confide correction confide correction

CONTENTS

1	GENERAL DESCRIPTION	6
2	FEATURES	6
3	ORDERING INFORMATION	7
4	BLOCK DIAGRAM	8
5	PIN DESCRIPTION	9
6	FUNCTIONAL BLOCK DESCRIPTIONS	12
6.	.1 MCU INTERFACE SELECTION	
6	6.1.1 MCU Parallel 6800-series Interface	
6	6.1.2 MCU Parallel 8080-series Interface	
-	6.1.3 MCU Serial Interface (4-wire SPI)	
	6.1.4 MCU Serial Interface (3-wire SPI)	
6.	6.1.5 MCU I ² C Interface	
0. 6.		
0. 6.		
6.		
6.		
0. 6		
6.		
6.		
	6.9.1 Power ON and OFF sequence with External V _{CC}	
	6.9.2 Power ON and OFF sequence with Charge Pump Application	
6.	10 CHARGE PUMP REGULATOR	
7	MAXIMUM RATINGS	27
8	DC CHARACTERISTICS	28
9	AC CHARACTERISTICS	29
10	APPLICATION EXAMPLE	

TABLES

7
9
9
12
12
14
14
15
27
29
34

FIGURES

Figure 4-1: SSD1312 Block Diagram	8
Figure 6-1: Data read back procedure - insertion of dummy read	13
Figure 6-2: Example of Write procedure in 8080 parallel interface mode	13
Figure 6-3: Example of Read procedure in 8080 parallel interface mode	13
Figure 6-4: Display data read back procedure - insertion of dummy read	14
Figure 6-5: Write procedure in 4-wire Serial interface mode	15
Figure 6-6: Write procedure in 3-wire Serial interface mode	15
Figure 6-7: I ² C-bus data format	17
Figure 6-8: Definition of the Start and Stop Condition	18
Figure 6-9: Definition of the acknowledgement condition	
Figure 6-10: Definition of the data transfer condition	18
Figure 6-11: Oscillator Circuit and Display Time Generator	19
Figure 6-12: Segment Output Waveform in three phases	21
Figure 6-13: GDDRAM pages structure	22
Figure 6-14: Enlargement of GDDRAM (No row re-mapping and column-remapping)	22
Figure 6-15: I _{REF} Current Setting by Resistor Value	
Figure 6-16: The Power ON Sequence	
Figure 6-17: The Power OFF Sequence	
Figure 6-18: The Power ON sequence with Charge Pump Application	25
Figure 6-19: The Power OFF sequence with Charge Pump Application	
Figure 9-1: 6800-series MCU parallel interface characteristics	
Figure 9-2: 8080-series parallel interface characteristics	
Figure 9-3: Serial interface characteristics (4-wire SPI)	
Figure 9-4: Serial interface characteristics (3-wire SPI)	
Figure 9-5 I2C interface Timing characteristics	
Figure 10-1: Application Example of SSD1312 with External V _{CC} and I ² C interface	
Figure 10-2: Application Example of SSD1312 with Internal Charge Pump and I ² C interface	35
Figure 9-3: Serial interface characteristics (4-wire SPI) Figure 9-4: Serial interface characteristics (3-wire SPI) Figure 9-5 I2C interface Timing characteristics Figure 10-1: Application Example of SSD1312 with External V _{CC} and I ² C interface Figure 10-2: Application Example of SSD1312 with Internal Charge Pump and I ² C interface	

GENERAL DESCRIPTION 1

SSD1312 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 128 segments and 64 commons. This IC is designed for Common Cathode type OLED/PLED panel.

SSD1312 displays data directly from its internal 128 x 64 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable I2C Interface, 6800-/8080series compatible Parallel Interface or Serial Peripheral Interface.

The 256 steps contrast control and oscillator which embedded in SSD1312 reduces the number of external components. SSD1312 is suitable for portable applications requiring a compact size and high output brightness, such as set-top box, car audio, wearable electronics, etc.

2 **FEATURES**

- Resolution: 128 x 64 dot matrix panel .
- Power supply
 - $V_{DD} = 1.65V 3.5V, \le V_{BAT}$ (for IC logic) 0
 - (for charge bump regulator circuit) $V_{BAT} = 3.0V - 4.5V$ 0
 - $V_{CC} = 7.5V 16.5V$ (for Panel driving) 0
- Segment maximum source current: 480uA
- Common maximum sink current: 61.5mA
- Embedded 128 x 64 bit SRAM display buffer
- Pin selectable MCU Interfaces:
 - 8 bits 6800/8080-series parallel Interface 0
 - 0 3/4 wire Serial Peripheral Interface
 - o I²C Interface
- Screen saving continuous scrolling function in both horizontal and vertical direction
- Screen saving infinite content scrolling function
- Internal or external I_{REF} selection
- Internal charge pump regulator •
- RAM write synchronization signal
- Programmable Frame Rate and Multiplexing Ratio
- Row Re-mapping and Column Re-mapping
- Portrait Addressing Mode •
- Power On Reset (POR) •
- Dynamic Grayscale
- **On-Chip Oscillator**
- Chip layout for COG, COF
- Wide range of operating temperature: -40°C to 85°C

3 ORDERING INFORMATION

Ordering Part Number	SEG	СОМ	Package Form	Remark
SSD1312Z2	128	64	COG	 Min SEG pad pitch : 27um Min COM pad pitch : 27um Min I/O pad pitch : 30um Die thickness: 250um Bump height: nominal 9um

Table 3-1: Ordering Information

confidence correction confidence correction confidence correction

4 BLOCK DIAGRAM

Figure 4-1: SSD1312 Block Diagram

5 PIN DESCRIPTION

Key:

I = Input	NC = Not Connected
O = Output	Pull LOW = connect to Ground / V_{LL}
I/O = Bi-directional (input/output)	Pull HIGH = connect to V_{DD} / V_{LH}
P = Power pin	

Table 5-1: Pin Description

Pin Name	Туре	Description									
V _{DD}	Р	Power supply pin for core logic operation.									
V _{CC}	Р	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. When charge pump is enabled, a capacitor should be connected between this pin and V_{SS} .									
V _{SS}	Р	Ground pin. It must be connected to external ground.									
V _{LSS}	Р	This is an analog ground pin. It should be connected to V_{SS} externally.									
V _{COMH}	0	COM signal deselected voltage level. A capacitor should be connected between this pin and V _{SS} .									
V _{BAT}	Р	Power supply for charge pump regulator circuit.									
		Status V _{BAT} V _{DD} V _{CC}									
		Enable charge pumpConnect to external VBAT sourceConnect to external VDD sourceA capacitor should be 									
		Disable charge pump Keep float Connect to external V _{DD} source Connect to external V _{CC} source									
BGGND	Р	Reserved pin. It should be connected to V _{SS} externally.									
V _{LH}	Р	Logic high (same voltage level as V_{DD}) for internal connection of input and I/O pins. No need to connect to external power source.									
V _{LL}	Р	Logic low (same voltage level as V_{SS}) for internal connection of input and I/O pins. No need to connect to external ground.									
C1P/C1N C2P/C2N	Ι	C1P/C1N – Pin for charge pump capacitor; connect to each other with a capacitor. C2P/C2N – Pin for charge pump capacitor; connect to each other with a capacitor.									
BS[2:0]	Ι	MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS2, BS1 and BS0 are pin select.									
		Table 5-2: Bus Interface selection									
		BS[2:0] Interface									
		000 4 line SPI									
		001 3 line SPI									
		010 I ² C									
		1108-bit 8080 parallel									
		100 8-bit 6800 parallel									
		Note									
		⁽¹⁾ 0 is connected to V_{SS} / V_{LL} ⁽²⁾ 1 is connected to V_{DD} / V_{LH}									
		V I IS CONNECTED TO A DD / A TH									

Pin Name	Туре	Description
I _{REF}	Ι	This is segment output current reference pin. When external I_{REF} is used, a resistor should be connected between this pin and V_{SS} to maintain the I_{REF} current at 10uA. Please refer to Figure 6-15 for the details of resistor value. When internal I_{REF} is used, this pin should be kept NC.
FR	0	This pin outputs RAM write synchronization signal. Proper timing between MCU data writing and frame display timing can be achieved to prevent tearing effect. It should be kept NC if it is not used.
CL	Ι	This is external clock input pin. When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be connected to V_{SS} / V_{LL} . When internal clock is disabled (i.e. LOW in CLS pin), this pin is the external clock source input pin.
CLS	Ι	This is internal clock enable pin. When it is pulled HIGH (i.e. connect to V_{DD} / V_{LH}), internal clock is enabled. When it is pulled LOW (i.e. connect to V_{SS} / V_{LL}), the internal clock is disabled; an external clock source must be connected to the CL pin for normal operation.
RES#	Ι	This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin HIGH (i.e. connect to V_{DD} / V_{LH}) during normal operation.
CS#	Ι	This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW (active LOW).
D/C#	1	This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data at D[7:0] will be interpreted as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to a command register. In I ² C mode, this pin acts as SA0 for slave address selection. When 3-wire serial interface is selected, this pin must be connected to V_{SS} / V_{LL} . For detail relationship to MCU interface signals, refer to Timing Characteristics Diagrams Figure 9-1 to Figure 9-3 .
E (RD#)	I	 This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I²C interface is selected, this pin must be connected to V_{SS} / V_{LL}.
R/W#(WR#)	Ι	This is read / write control input pin connecting to the MCU interface. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH (i.e. connect to V_{DD}) and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I ² C interface is selected, this pin must be connected to V_{SS} / V_{LL} .

Pin Name	Туре	Description
D[7:0]	IO	These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW.
		When serial interface mode is selected, D2, D1 should be tied together as the serial data input: SDIN, and D0 will be the serial clock input: SCLK.
		When I ² C mode is selected, D2, D1 should be tied together and serve as SDA _{out} , SDA _{in} in application and D0 is the serial clock input, SCL.
VREF	IO	This is a reserved pin. It should be kept NC.
TR[15:0]	-	Reserved pin. It should be kept NC.
SEG0 ~ SEG127	0	These pins provide Segment switch signals to OLED panel. These pins are V_{SS} state when display is OFF.
COM0 ~ COM63	0	These pins provide Common switch signals to OLED panel. They are in high impedance state when display is OFF.
NC	-	This is dummy pin. It should be kept NC.
		These pins provide Common switch signals to OLED panel. They are in high impedance state when display is OFF. This is dummy pin. It should be kept NC.

6 FUNCTIONAL BLOCK DESCRIPTIONS

6.1 MCU Interface Selection

SSD1312 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in **Table 6-1**. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to **Table 5-2** for BS[2:0] setting).

Pin Name Bus	Data/C	Data/Command Interface									Control Signal				
Interface	D7	D6	D5	D4	D3	D2	D1	D0	Е	R/W #	CS#	D/C#	RES#		
8-bit 8080	D[7:0]				[7:0]				RD#	WR#	CS#	D/C#	RES#		
8-bit 6800	D[7:0]				7:0]				Е	R/W#	CS#	D/C#	RES#		
3-wire SPI	Tie LOW					SDIN	$J^{(1)}$	SCLK	Tie L	OW	CS#	Tie LOW	RES#		
4-wire SPI	Tie LO	W				SDIN	$J^{(1)}$	SCLK	Tie L	JOW	CS#	D/C#	RES#		
I ² C	Tie LO	W				SDA _{OUT}	SDA_{IN}	SCL	Tie L	JOW		SA0	RES#		

Table 6-1: MCU interface assignment under d	lifferent bus interface mode
---	------------------------------

Note: ⁽¹⁾ When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 and D2 should be tied together as the serial data input: SDIN.

6.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Function	Е	R/W #	CS#	D/C#
Write command	\downarrow	L	L	L
Read status	\downarrow	Н	L	L
Write data	\downarrow	L	L	Н
Read data	\downarrow	Н	L	Н

Table 6-2: Control pins of 6800 interface

Note

⁽¹⁾ \downarrow stands for falling edge of signal

H stands for HIGH in signal

L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in **Figure 6-1**.

6.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Function	RD#	WR#	CS#	D/C#
Write command	Н	↑	L	L
Read status	↑	Н	L	L
Write data	Н	↑	L	Н
Read data	↑	Н	L	Н

Table 6-3: Control pins of 8080 interface

Note

 $^{(1)}$ \uparrow stands for rising edge of signal

⁽²⁾ H stands for HIGH in signal

⁽³⁾ L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in **Figure 6-4**.

Figure 6-4: Display data read back procedure - insertion of dummy read

6.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, D0 acts as SCLK, D1 and D2 are tied together to act as SDIN. For the unused data pins from D3 to D7, E(RD#) and R/W#(WR#) can be connected to an external ground.

Function	Е	R/W #	CS#	D/C#	D0
Write command	Tie LOW	Tie LOW	L	L	↑
Write data	Tie LOW	Tie LOW	L	Н	↑

Note

⁽¹⁾ H stands for HIGH in signal

⁽²⁾L stands for LOW in signal

 $^{(3)}$ \uparrow stands for rising edge of signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ..., D0. D/C# is sampled on every eighth clock and D/C# should be kept stable throughout eight clock period. The data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

Figure 6-5: Write procedure in 4-wire Serial interface mode

6.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 and D2 are tied together to act as SDIN. For the unused data pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Under serial mode, only write operations are allowed.

	-	ubie o et conti	or pins		i iui ii	
Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0	Note
Write command	Tie LOW	Tie LOW	L	Tie LOW	↑	⁽¹⁾ L stands for LOW in signal
Write data	Tie LOW	Tie LOW	L	Tie LOW	↑	$^{(2)}$ \uparrow stands for rising edge of signal

D4

D3

D2

D1

D0

D5

Table 6-5: Control pins of 3-wire Serial interface

D/C#

SDIN(D1)

D7

D6

6.1.5 MCU I²C Interface

The I²C communication interface consists of slave address bit SA0, I²C-bus data signal SDA (SDA_{OUT}/D₂ for output and SDA_{IN}/D₁ for input) and I²C-bus clock signal SCL (D₀). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

a) Slave address bit (SA0)

SSD1312 has to recognize the slave address before transmitting or receiving any information by the I²C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD1312. D/C# pin acts as SA0 for slave address selection. "R/W#" bit is used to determine the operation mode of the I²C-bus interface. R/W# = 1, it is in read mode. R/W# = 0, it is in write mode.

b) I²C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

"SDA_{IN}" and "SDA_{OUT}" are tied together and serve as SDA. The "SDA_{IN}" pin must be connected to act as SDA. The "SDA_{OUT}" pin may be disconnected. When "SDA_{OUT}" pin is disconnected, the acknowledgement signal will be ignored in the I²C-bus.

c) I²C-bus clock signal (SCL)

The transmission of information in the I²C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

6.1.5.1 I²C-bus Write Data

The I²C-bus interface gives access to write data and command into the device. Please refer to for the write mode of I²C-bus in chronological order.

Figure 6-7: I²C-bus data format

6.1.5.2 Write mode for I2C

- 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in **Figure 6-8**. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD1312, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the **Figure 6-9** for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0" 's.
 - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
 - b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.
- 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in **Figure 6-8**. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the **Figure 6-10** for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

6.2 Command Decoder

This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin.

If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to the corresponding command register.

6.3 Oscillator Circuit and Display Time Generator

Figure 6-11: Oscillator Circuit and Display Time Generator

This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to V_{SS} . Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency F_{OSC} can be changed by command D5h A[7:4].

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command D5h

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula.

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. of Mux}$$

where

- D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to 16.
- K is the number of display clocks per row. The value is derived by K = Phase 1 period + Phase 2 period + $K_0 = 4 + 4 + 95 = 103$ at power on reset (i.e. $K_0 = 103$) Please refer to **Section 6.6** for the details of the "Phase".
- Number of multiplex ratio is set by command A8h. The power on reset value is 63 (i.e. 64 MUX).
- F_{OSC} is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register setting results in higher frequency.

6.4 FR Synchronization

FR synchronization signal can be used to prevent tearing effect.

The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete (more than one frame but within two frames), it is a slow write one.

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse.

For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR pulse and must be finished before the rising edge of the 3rd FR pulse.

6.5 Reset Circuit

When RES# input is LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 x 64 Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)

6.6 Segment Drivers / Common Drivers

Segment drivers deliver 128 current sources to drive the OLED panel. The driving current can be adjusted by altering the registers of the contrast setting command (81h). Common drivers generate voltage-scanning pulses.

The segment driving waveform is divided into three phases:

- 1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next image content display.
- 2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the corresponding voltage level from VSS. The period of phase 2 can be programmed in length from 2 to 30 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
- 3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the current drive stage.

Figure 6-12: Segment Output Waveform in three phases

After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This threestep cycle is run continuously to refresh image display on OLED panel.

In phase 3, if the length of current drive pulse width is set to 103, after finishing 103 DCLKs in current drive phase, the driver IC will go back to phase 1 for next row display.

6.7 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128 x 64 bits and the RAM is divided into eight pages, from PAGE0 to PAGE7, which are used for monochrome 128x64 dot matrix display, as shown in **Figure 6-13**.

		Row re-mapping
PAGE0 (COM0-COM7)	Page 0	PAGE0 (COM 63-COM56)
PAGE1 (COM8-COM15)	Page 1	PAGE1 (COM 55-COM48)
PAGE2 (COM16-COM23)	Page 2	PAGE2 (COM47-COM40)
PAGE3 (COM24-COM31)	Page 3	PAGE3 (COM39-COM32)
PAGE4 (COM32-COM39)	Page 4	PAGE4 (COM31-COM24)
PAGE5 (COM40-COM47)	Page 5	PAGE5 (COM23-COM16)
PAGE6 (COM48–COM55)	Page 6	PAGE6 (COM15-COM8)
PAGE7 (COM56-COM63)	Page 7	PAGE7 (COM 7-COM0)
	SEG0SEG127	0
Column re-mapping	SEG127SEG0	

Figure 6-13: GDDRAM pages structure

When one data byte is written into GDDRAM, all the rows image data of the same page of the current column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is written into the top row, while data bit D7 is written into bottom row as shown in **Figure 6-14**.

Figure 6-14: Enlargement of GDDRAM (No row re-mapping and column-remapping)

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as shown in **Figure 6-13**.

For vertical shifting of the display, an internal register storing the display start line can be set to control the portion of the RAM data to be mapped to the display (command D3h).

6.8 SEG/COM Driving Block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} is the most positive voltage supply.
- V_{COMH} is the Common deselected level. It is internally regulated.
- V_{LSS} is the ground path of the analog and panel current.
- I_{REF} is a reference current source for segment current drivers I_{SEG}. The relationship between reference current and segment current of a color is:

 $I_{SEG} = (Contrast / 255) \times 48 \times I_{REF}$

in which the contrast $(1 \sim 255)$ is set by Set Contrast command 81h

When external I_{REF} is used, the magnitude of I_{REF} is controlled by the value of resistor, which is connected between I_{REF} pin and V_{SS} as shown in **Figure 6-15**. It is recommended to set I_{REF} to 10±2uA so as to achieve $I_{SEG} = 480$ uA at maximum contrast 255.

Since the voltage at I_{REF} pin is $V_{CC} - 2V$, the value of resistor R1 can be found as below:

For $I_{REF} = 10uA$, $V_{CC} = 12V$:

$$\begin{aligned} \text{R1} &= (\text{Voltage at } I_{\text{REF}} - V_{\text{SS}}) \ / \ I_{\text{REF}} \\ &\approx (12 - 2) \ / \ 10 \text{uA} \\ &= 1 M \Omega \end{aligned}$$

When internal I_{REF} is used, the I_{REF} pin should be kept NC. The selection of external or internal I_{REF} is controlled by command ADh. For details, please refer to SSD1312 Command Table.

6.9 Power ON and OFF Sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1312.

6.9.1 Power ON and OFF sequence with External $V_{\rm CC}$

Power ON sequence:

- $1. \quad Power \ ON \ V_{DD}$
- 2. After V_{DD} become stable, wait at least 20ms (t₀), set RES# pin LOW (logic low) for at least 3us (t₁) ⁽⁴⁾ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least $3us (t_2)$. Then Power ON V_{CC}.⁽¹⁾
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (t_{AF}) .

Figure 6-16: The Power ON Sequence

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF $V_{CC.}^{(1), (2)}$
- 3. Power OFF V_{DD} after t_{OFF} . ⁽⁴⁾ (where Minimum t_{OFF} =0ms, typical t_{OFF} =100ms)

Figure 6-17: The Power OFF Sequence

Note:

 $^{(1)}V_{CC}$ should be kept float (i.e. disable) when it is OFF.

- $^{(2)}$ Power Pins (V_{DD}, V_{CC}) can never be pulled to ground under any circumstance.
- $^{(3)}$ The register values are reset after t_1 .

 $^{(4)}$ V_{DD} should not be Power OFF before V_{CC} Power OFF.

6.9.2 Power ON and OFF sequence with Charge Pump Application

Power ON sequence:

- 1. Power ON V_{DD}
- 2. Wait for t_{ON} . Power ON V_{BAT} . (where Minimum $t_{ON} = 0$ ms)
- 3. After V_{DD} become stable, wait at least 20ms (t₀), set RES# pin LOW (logic low) for at least 3us (t₁) ⁽³⁾ and then HIGH (logic high).
- 4. After set RES# pin LOW (logic low), wait for at least 3us (t₂). Then input commands with below sequence:
 - a. 8Dh for enabling internal charge pump
 - b. AFh for display ON
- 5. SEG/COM will be ON after 100ms (t_{AF}).

Figure 6-18: The Power ON sequence with Charge Pump Application

Power OFF sequence:

- 1. Send command AEh for display OFF
- 2. Send command 8Dh 10h to disable charge pump
- 3. Power OFF V_{BAT} after toFF. (1), (2) (Typical toFF = 100ms)
- 4. Power OFF V_{DD} after t_{OFF2} . (where Minimum $t_{OFF2} = 0$ ms⁽⁴⁾, Typical $t_{OFF2}=5$ ms)

Figure 6-19: The Power OFF sequence with Charge Pump Application

Note:

 $^{(1)}V_{BAT}$ should be kept float (i.e. disable) when it is OFF.

⁽²⁾ Power Pins (V_{BAT}) can never be pulled to ground under any circumstance.

- $^{(3)}$ The register values are reset after t_1 .
- $^{(4)}$ V_{DD} should not be Power OFF before V_{BAT} Power OFF.

6.10 Charge Pump Regulator

The internal regulator circuit in SSD1312 accompanying only 2 external capacitors can generate a maximum of 10.0V voltage supply, V_{CC} and a maximum output loading of 12mA from a low voltage supply input, V_{BAT} . In SSD1312, there are 4 charge pump output V_{CC} setting, 7.5V, 8.5V, 9V, and 10V, which can be selected by software command 8Dh setting. The V_{CC} is the voltage supply to the OLED driver block. This regulator can be turned ON/OFF by software command 8Dh setting. For details, please refer to SSD1312 Command Table.

confidence correction confidence correction confidence correction confidence correction

7 **MAXIMUM RATINGS**

Voltage Refe	erence to V_{SS})		
Symbol	Parameter	Value	Unit
V _{DD}		-0.3 to +4	V
V _{BAT}	Supply Voltage	-0.3 to +6	V
V _{CC}		0 to 18	V
V _{SEG}	SEG output voltage	0 to V_{CC}	V
V _{COM}	COM output voltage	0 to 0.9*V _{CC}	V
Vin	Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
T _A	Operating Temperature	-40 to +85	C
T _{stg}	Storage Temperature Range	-65 to +150	C

Table 7-1: Maximum Ratings

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

*This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

8 DC CHARACTERISTICS

$\begin{array}{c} \textbf{Condition (Unless otherwise specified):} \\ Voltage referenced to V_{SS} \end{array}$

Voltage referenced to V V_{DD} = 1.65V to 3.5V T_A = 25° C

Table 8-1: DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Vcc	Operating Voltage	-	7.5	-	16.5	V
Vdd	Logic Supply Voltage	-	1.65	-	3.5	V
V _{BAT}	Charge Pump Regulator Supply Voltage	-	3.0	-	4.5	v
		7.5V mode	7	7.5	-	
Charge		8.5V mode	8	8.5	-	1
Pump V _{CC}	Charge Pump Output Voltage	9V mode	8.5	9	-	V
		10V mode	9.5	10	-	1
Voh	High Logic Output Level	$I_{OUT} = 100 uA, 3.3 MHz$	0.9 x V _{DD}	-	-	V
Vol	Low Logic Output Level	I _{OUT} = 100uA, 3.3MHz	-	-	0.1 x V _{DD}	V
VIH	High Logic Input Level	-	0.8 x V _{DD}	-	-	V
V _{IL}	Low Logic Input Level	-	-	-	0.2 x V _{DD}	V
I _{CC, SLEEP}	I _{CC,} Sleep mode Current	$V_{DD} = 1.65 V \sim 3.5 V$, $V_{CC} = 7.5 V \sim 16.5 V$ Display OFF, No panel attached	-	-	10	uA
Idd, sleep	IDD, Sleep mode Current	$V_{DD} = 1.65 V \sim 3.5 V$, $V_{CC} = 7.5 V \sim 16.5 V$ Display OFF, No panel attached	-	-	10	uA
Ibat, sleep	I _{BAT,} Sleep mode Current	$V_{DD} = 1.65 V \sim 3.5 V$, $V_{BAT} = 3 V \sim 4.5 V$ Display OFF, No panel attached	-	-	10	uA
I _{CC}	V _{CC} Supply Current $V_{DD} = 2.8V, V_{CC} = 12V,$ $I_{REF} = 10uA, No loading,$ Display ON, All ON		-	700	900	uA
Idd	V _{CC} Supply Current $V_{DD} = 2.8V, V_{CC} = 12V,$ $I_{REF} = 10uA, No loading,$ Display ON, All ON	Contrast = FFh	-	305	375	uA
	Segment Output Current	Contrast=FFh	-	480	-	
Iseg	$V_{DD}= 2.8V, V_{CC}= 12V, I_{REF}=10uA,$	Contrast=AFh	-	330	-	uA
	Display ON.	Contrast=3Fh	-	120	-	-
Dev	Segment output current uniformity	$\begin{array}{l} Dev = (I_{SEG} - I_{MID})/I_{MID} \\ I_{MID} = (I_{MAX} + I_{MIN})/2 \\ I_{SEG}[0:127] = Segment \ current \ at \\ contrast = FFh \end{array}$	-3	-	+3	%
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	Adj Dev = $(I[n]-I[n+1]) / (I[n]+I[n+1])$	-2	-	+2	%

AC CHARACTERISTICS 9

Conditions:

Voltage referenced to V_{SS} $V_{DD} = 1.65$ to 3.5V $T_A = 25^{\circ}C$

Table 9-1: AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Fosc ⁽¹⁾	Oscillation Frequency of Display Timing Generator	$V_{DD} = 2.8 V$	620	688	755	kHz
Ffrm	Frame Frequency	128x64 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	Fosc x 1/(DxKx64) ⁽²⁾	-	Hz
RES#	Reset low pulse width		3	-	-	us

Note

⁽¹⁾ F_{OSC} stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is ²⁾ D: divide ratio (default value = 1) K: number of display clocks per row period (default value = 103) in default value.

⁽²⁾ D: divide ratio (default value = 1)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	5	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	30	-	-	ns
t _{DHW}	Write Data Hold Time	30	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
ton	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	180	ns
PW _{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	180 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t _R	Rise Time	9-	-0	15	ns
t _F	Fall Time	-	-	15	ns

Table 9-2: 6800-Series MCU Parallel Interface Timing Characteristics

Figure 9-1: 6800-series MCU parallel interface characteristics

Symbol	Parameter	Min	Тур	Max	Unit
cycle	Clock Cycle Time	300	-	-	ns
AS	Address Setup Time	10	-	-	ns
AH	Address Hold Time	0	-	-	ns
DSW	Write Data Setup Time	30	-	-	ns
DHW	Write Data Hold Time	30	-	-	ns
DHR	Read Data Hold Time	20	-	-	ns
ОН	Output Disable Time	-	-	70	ns
ACC	Access Time	-	-	180	ns
PWLR	Read Low Time	180	-	-	ns
PWLW	Write Low Time	60	-	-	ns
PWHR	Read High Time	60	-	-	ns
PWHW	Write High Time	60	-	-	ns
R	Rise Time	-	-	15	ns
F	Fall Time	-	-	15	ns
CS	Chip select setup time	0	-	-	ns
CSH	Chip select hold time to read signal	0	-	-	ns
CSF	Chip select hold time	20	-	-	ns

Table 9-3: 8080-Series MCU Parallel Interface Timing Characteristics

Figure 9-2: 8080-series parallel interface characteristics

Write Cycle

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	50	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
$t_{\rm AH}$	Address Hold Time	10	-	-	ns
t _{CSS}	Chip Select Setup Time	10	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	10	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	10	-	-	ns
t _{CLKL}	Clock Low Time	15	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	10	ns
t _F	Fall Time	-	-	10	ns

$(V_{DD} - V_{SS} = 1.65 V \sim 3.5 V, T_A = 25^{\circ}C)$							
Symbol	Parameter	Min	Тур	Max	Unit		
t _{cycle}	Clock Cycle Time	50	-	-	ns		
t _{CSS}	Chip Select Setup Time	10	-	-	ns		
t _{CSH}	Chip Select Hold Time	10	-	-	ns		
t _{DSW}	Write Data Setup Time	10	-	-	ns		
t _{DHW}	Write Data Hold Time	10	-	-	ns		
t _{CLKL}	Clock Low Time	15	-	-	ns		
t _{CLKH}	Clock High Time	20	-	-	ns		
t _R	Rise Time	-	-	10	ns		
t _F	Fall Time	-	-	10	ns		

Table 9-5: Serial Interface Timing Characteristics (3-wire SPI)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start condition Hold Time	0.6	-	-	us
t _{HD}	Data Hold Time (for "SDA _{OUT} " pin)	0	-	-	ns
	Data Hold Time (for "SDA _{IN} " pin)	300	-	-	ns
t _{SD}	Data Setup Time	100	-	-	ns
t _{SSTART}	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
t _{SSTOP}	Stop condition Setup Time	0.6	-	-	us
t _R	Rise Time for data and clock pin	-	-	300	ns
t _F	Fall Time for data and clock pin	-	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3	-	-	us

Table 9-6: I2C Interface Timing Characteristics

Ń Figure 9-5 I2C interface Timing characteristics

tior

20

10 APPLICATION EXAMPLE

Figure 10-1: Application Example of SSD1312 with External $V_{\rm CC}$ and I^2C interface

Figure 10-2: Application Example of SSD1312 with Internal Charge Pump and I²C interface

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any products of any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without initiation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its pattern rights or others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech radicates for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech land use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard GB/T 26572-2011 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子电器产品中限用物質的限用要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

Appendix III: SSD1312 Command Table and Command Descriptions

1 COMMAND TABLE

Table 1-1: SSD1312 Command Table

(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)

Fund	lamental	Com	man	d Tal										
D/C#			D6						D0	Command	Description			
0	00~0F	0	0	0	0	X3	X ₂	X1	X ₀	Set Lower Column Start Address for Page Addressing Mode	Set the lower nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET. Note ⁽¹⁾ This command is only for page addressing mode			
0	10~17	0	0	0	1	0	X ₂	X1	X ₀	Set Higher Column Start Address for Page Addressing Mode	Set the higher nibble of the column start address register for Page Addressing Mode using X[2:0] as data bits. The initial display line register is reset to 0000b after RESET. Note ⁽¹⁾ This command is only for page addressing mode			
0	20	0	0	1	0	0	0	0	0	Set Memory				
0	A[3]	*	*	*	*	A ₃	*	A_1	A ₀	Addressing	A[3] A[1:0] Addressing Modes			
	A[1:0]									Mode	0b 01b COM-Page H-Mode			
									10		0b 10b Page Addressing Mode (RESET)			
								0			1b01bSEG-Page H-Mode			
				R		0	19				Note ⁽¹⁾ Setting other than the above table is invalid.			
	21	0	0	1	0	0	0	0	1	Set Line	Setup line start and end address			
	A[6:0] B[6:0]	*	A ₆ , B ₆	A5 B5	A ₄ B ₄	A ₃ B ₃	A ₂ B ₂	A ₁ B ₁	A ₀ B ₀	Address	In COM-Page H-mode, A[6:0] : Set Row start address, range : 0-127d, (RESET=0d) B[6:0]: Set Row end address, range : 0-127d, (RESET =127d) In SEG-Page H-mode, A[6:0] : Set Column start address, range : 0-63d, (RESET=0d) B[6:0]: Set Column end address, range : 0-63d, (RESET=63d) Note ⁽¹⁾ This command is only for COM-Page H-mode and SEG-Page H-mode. ⁽²⁾ Column defines the graphic display data RAM column (along COM direction) while Row defines the Graphic display data RAM row (along SEG direction).			

Fund	undamental Command Table												
D/C#						D3	D2	D1	DO	Command	Description		
0	22	0	0	1	0	0	0	1	0	Set Page	Setup page start and end address		
0	A[3:0]	*	*	*	*	A ₃	A_2	A_1	A_0	Address			
0	B[3:0]	*	*	*	*	B_3	B_2	B_1	B_0		In COM-Page H-mode,		
											A[4:0] : Set COM-Page start Address,		
											range 0-7d, (RESET = 0d)		
											B[4:0]: Set COM-Page end address,		
											range : $0-7d$, (RESET = $7d$)		
											In SEG-Page H-mode,		
											A[4:0] : Set SEG-Page start Address,		
											range 0-15d, (RESET = 0d)		
											B[4:0]: Set SEG-Page end address,		
											range : $0-15d$, (RESET = $15d$)		
											Note		
											⁽¹⁾ This command is only for COM-Page H-mode and		
											SEG-Page H-mode.		
											$^{(2)}$ The Page in SEG-Page is a transpose of the Page in		
											COM-Page mode. Page in COM-Page mode defines a		
											group of 8-bit COM data on the same SEG line, while		
											Page in SEG-Page mode defines a group of 8-bit SEG		
											data in the same COM line.		
0	40~7F	0	1	X5	X_4	X3	X2	X_1	X_0	Set Display	Set display RAM display start line register from 0-		
										Start Line	63 using X5 X4X3X2X1X0.		
								4			Display start line register is reset to 000000b		
											during RESET.		
0	81	1	0	0	0	0	0	0	1	Set Contrast	Double byte command to select one of the contrast		
	A[7:0]	A ₇	A_6	A ₅	A ₄	A ₃	A_2	A_1	A ₀	Control	steps. Contrast increases as the value increases.		
Ŭ		11/	1 10	115		1 13			1 -0		(RESET = 7Fh)		
											A[7:0] valid range: 01h to FFh		
0	A0/A1	1	0		0	0	0	0	X_0	Set Segment	A0h, X[0]=0b: column address 0 is mapped to SEG0		
										Re-map	(RESET)		
											All V[0]-1b; column address 128 is manned to SEC0		
			1								A1h, X[0]=1b: column address 128 is mapped to SEG0		
0	A4/A5	1	0	1	0	0	1	0	X ₀	Entire Display	A4h, X ₀ =0b: Resume to RAM content display		
Ĩ		-							0	ON	(RESET)		
											Output follows RAM content		
									1		A5h, X ₀ =1b: Entire display ON		
									1		Output ignores RAM content		
									1				
	A (/ A 7	1	0	1			1	1	37	g	A (L. M(0), 0h, Normal Fault (DECET)		
0	A6/A7	1	0	1	0	0	1	1	X_0	Set	A6h, X[0]=0b: Normal display (RESET)		
									1	Normal/Inverse Display	0 in RAM: OFF in display panel 1 in RAM: ON in display panel		
									1	Dispiay	i in KAW. ON in uispiay panei		
											A7h, X[0]=1b: Inverse display		
											0 in RAM: ON in display panel		
									1		1 in RAM: OFF in display panel		
									1		- ····································		
									1				

	lamental	-				- -		b a - i	- -	~	
		D7	-			D3			DO		Description
0	A8	1	0	1	0	1	0	0	0	1	Set MUX ratio to N+1 MUX
0	A[5:0]	*	*	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		N=A[5:0]: from 16MUX to 64MUX.
											RESET= 11 1111b (i.e. 63d, 64MUX) A[5:0] from 0 to 14 are invalid entry.
0	AD	1	0	1	0	1	1	0	1	External or	Select external or internal I _{REF} :
0	A[4]	0	1	0	Å4	0	0	0	0		$A[4] = '0'$ Select external I_{REF} (RESET)
										Selection	A[4] = '1' Enable internal I _{REF} during display ON
											Note ⁽¹⁾ Refer to section 6.8 in SSD1312 datasheet for details.
0	AE/AF	1	0	1	0	1	1	1	X ₀	ON/OFF	AEh, X[0]=0b: Display OFF (sleep mode) (RESET)
											AFh X[0]=1b: Display ON in normal mode
0	B0~B7	1	0	1	1	0	X2	X1	X_0		Set GDDRAM Page Start Address
											PAGE0~PAGE7 for Page Addressing Mode
											using X[2:0].
										Addressing Mode	Note
										Widde	⁽¹⁾ This command is only for page addressing mode
									1		This command is only for page addressing mode
0	C0/C8	1	1	0	0	X ₃	0	0	0	Output Scan	C0h, X[3]=0b: normal mode (RESET) Scan from COM0 to COM[N -1]
						G	0		0	Direction	C8h, X[3]=1b: remapped mode. Scan from COM[N-1] to COM0
							19				Where N is the Multiplex ratio.
0	D3	1	1	0	1	0	0	1	1	Set Display	Set line shift by COM from 0d~63d
0	A[5:0]	*	*	A_5	A_4	A ₃	A ₂	A ₁	A ₀		The value is reset to 00h after RESET.
Ŭ	11[0.0]			113	1 14	113	112	11	1 10	onset	
0 0	D5 A[7:0]	1 A7	1 A ₆	0 A5	1 A4	0 A3	1 A2	0 A1	1 A ₀	Clock Divide	A[3:0]: Define divide ratio (D) of display clock (DCLK) (i.e. 1, 2, 3,, 16)
										Ratio/Oscillator Frequency	(RESET is 0000b, i.e. divide ratio = 1)
											A[7:4] : Set the Oscillator Frequency, F _{OSC} . Oscillator Frequency increases with the value of A[7:4] and vice versa.
											(RESET is 1000b) Range: 0000b~1111b.
0	D9 A[7:0]	1 A7	1 A ₆	0 A5	1 A4	1 A3	$\begin{array}{c} 0\\ A_2 \end{array}$	0 A1	1 A ₀	Set Pre-charge Period	A[3:0] : Phase 1 period of up to 30 DCLK (i.e. 2, 4, 6,30)
	[,.v]	/	0	,		,	2	1	0		Clock 0 is invalid entry (RESET=2h)
											A[7:4] : Phase 2 period of up to 30 DCLK (i.e. 2, 4, 6,30)
											Clock 0 is invalid entry (RESET=2h)

Fund	lamental	Com	man	d Tal	ble						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
00	DA A[5:4]	1 0	1 0	0 A5	1 A ₄	1 0	0 0	1 0	0 0	Set SEG Pins Hardware Configuration	A[4]=0b, Sequential SEG pin configuration A[4]=1b (RESET), Alternative (odd/even) SEG pin configuration A[5]=0b (RESET), Disable SEG Left/Right remap A[5]=1b, Enable SEG Left/Right remap
00	DB A[5:3]	1 0	1 0	0 A ₅	1 A ₄	1 0	00	1 0	1 0	Set V _{COMH} select Level	Set COM select voltage level. $A[5:4]$ Hex codeV comh deselect level00b00h~ 0.65 x V_{CC}01b10h~ 0.71 x V_{CC}10b20h~ 0.77 x V_{CC} (RESET)11b30h~ 0.83 x V_{CC}
0	E3	1	1	1	0	0	0	1	1	NOP	Command for no operation
00	8D A[7:0]	1 A ₇	0 A ₆	0 A5	0 1			0 A ₁		Charge Pump Setting	Enable / Disable internal charge pump: A[2] = 0b, Disable charge pump (RESET) A[2] = 1b, Enable charge pump during display on A[7:5] Hex code Charge Pump Mode 000b 12h 7.5V (RESET) 010b 52h 8.0V 011b 72h 9.0V 100b 92h 10.0V Note (1) The Charge Pump must be enabled by the following command sequence: 8Dh ; Charge Pump Setting 12h / 52h / 72h / 92h ; Enable Charge Pump AFh; Display ON
00	FD A[2]	1 0	1 0	1	1	1 0	1 A ₂	0 1	1 0	Set Command Lock	 A[2]: MCU protection status. A[2] = 0b, Unlock OLED driver IC MCU interface from entering command (RESET) A[2] = 1b, Lock OLED driver IC MCU interface from entering command Note ⁽¹⁾ The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command

Note
(1) "*" stands for "Don't care".

Bit Pattern	Command	Description
$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	Status Register Read	D[7]: Reserved
	5	D[6] : "1" for display OFF / "0" for display ON
		D[5]: Reserved
		D[4] Reserved
		D[3] Reserved
		D[2] Reserved
		D[1] Reserved
		D[0] : Reserved

Table 1-2 : Read Command Table

Note

⁽¹⁾ Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected results can occur.

1.1 Data Read / Write

To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation.

In normal data read mode the GDDRAM column address pointer will be increased automatically by one after each data read.

Also, a dummy read is required before the first data read.

To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both 6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode. The GDDRAM column address pointer will be increased automatically by one after each data write.

D/C#	# R/W# (WR #)	Comment	Address Increment
0	0	Write Command	No
-0	1	Read Status	No
1	0	Write Data	Yes
1	1	Read Data	Yes

 Table 1-3 : Address increment table (Automatic)

2 COMMAND DESCRIPTIONS

2.1 Fundamental Command

2.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)

This command specifies the lower nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Table 1-1 and Section 2.1.3 for details.

2.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~17h)

This command specifies the higher nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Table 1-1 and Section 2.1.3 for details.

2.1.3 Set Memory Addressing Mode (20h)

There are different memory addressing modes in SSD1312: page addressing mode, COM-Page H-mode and SEG-Page H-mode. User can sets the way of memory addressing by command 20h.

Page addressing mode (A[3:0]=0010b)

In page addressing mode, after the display RAM is read / written, the column address pointer is increased automatically by 1 and page address pointer is not changed. Users have to set the new page and column addresses in order to access the next page RAM content. The sequence of movement of the PAGE and column address point for page addressing mode is shown in Figure 2-1.

	U			U	U
		COL0	COL 1	 COL 126	COL 127
Ī	PAGE0				1
1	PAGE1				
ľ					
ľ	PAGE6				+
ľ	PAGE7				+

Figure 2-1 : Address Pointer Movement of Page addressing mode

In normal display data RAM read or write and page addressing mode, the following steps are required to define the starting RAM access pointer location:

- Set the page start address of the target display location by command B0h.
- Set the lower start column address of pointer by command 00h~0Fh.
- Set the higher start column address of pointer by command 10h~17h.

For example, if the page start address is set to B0h 02h, lower column address is 03h and higher column address is 10h, then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in Figure 2-3. The input data byte will be written into RAM position of column 3.

COM-Page and SEG-Page

SEG-Page provides a flexibility to transpose the RAM write orientation from COM-Page. Page in COM-Page mode defines a group of 8-bit COM data on the same SEG line, while Page in SEG-Page mode defines a group of 8-bit SEG data in the same COM line. The term "COL" means the graphic display data RAM column (along COM direction) while "ROW" means the graphic display data RAM row (along SEG direction). Figure 2-3 and Figure 2-4 show the RAM orientation of a Page in COM-Page mode and SEG-Page mode respectively.

Figure 2-3 : GDDRAM access pointer setting and orientation (No row and column-remapping) in COM-Page Mode

Figure 2-4 : GDDRAM access pointer setting and orientation (No row and column-remapping) in SEG-Page Mode

COM-Page H-mode (A[3:0]=0001b)

In COM-Page H-mode, after the display RAM is read / written, the page (COM-Page) address pointer is increased automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset to page start address and row (line) address pointer is increased by 1. The sequence of movement of the page and row address point for COM-Page H-mode is shown in Figure 2-5. When both row and page address pointers reach the end address, the pointers are reset to row start address and page start address (Dotted line in Figure 2-5.)

SEG-Page H-mode (A[3:0]=1001b)

In SEG-Page H-mode, the column (line) address pointer increased automatically by 1 every time the display RAM is written. The column address pointer reset to column start address and page (SEG-Page) address pointer is increased by 1 if the column address pointer reaches column end address. The column address and page address pointers are reset to column start address and page start address if both column and page address pointers reach the end address. The sequence of movement of the page and column address pointer for SEG-Page H-mode is shown in Figure 2-6.

	COL0	COL1	 COL62	COL63
PAGE0				
PAGE1				1
•	\leftarrow			1
PAGE14	\leftarrow			
PAGE15	$\mathbf{+}$			
	•	•		-

Figure 2-6 : Address Pointer Movement of SEG-Page H-mode

In normal display data RAM read or write in COM-Page or SEG-Page mode, the following steps are required to define the RAM access pointer location:

- Set the line start and end address of the target display location by command 21h.
- Set the page start and end address of the target display location by command 22h.

Example is shown in Figure 2-7.

2.1.4 Set Line Address (21h)

This triple byte command specifies line start address and end address of the display data RAM. This command also sets the row address pointer to row start address in COM-Page mode and sets the column address pointer to column start address in SEG-Page mode. This pointer is used to define the current read/write line address in graphic display data RAM. If COM-Page H mode or SEG-Page H-mode is enabled by command 20h, after finishing read/write one line data (one row in COM-Page H-mode or one column in SEG-Page H-mode), it is incremented automatically to the next line address. Whenever the line address pointer finishes accessing the end line address, it is reset back to start line address and the page address is incremented to the next page.

or

2.1.5 Set Page Address (22h)

This triple byte command specifies page start address and end address of the display data RAM. This command also sets the page address pointer to page start address. This pointer is used to define the current read/write page address in graphic display data RAM. If COM-Page H-mode or SEG-Page H-mode is enabled by command 20h, after finishing read/write one page data, it is incremented automatically to the next page address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start page address.

The figure below shows the way of line (row or column) and page address pointer movement in COM-Page H-mode through the example: page start address is set to 1 and page end address is set to 5, row start address is set to 2 and row end address is set to 97; COM-Page H-mode is enabled by command 20h. In this case, the graphic display data RAM row accessible range is from page 1 to page 5 and from row 2 to row 97 only. In addition, the page address pointer is set to 1 and row address pointer is set to 2. After finishing read/write one pixel of data, the page address is increased automatically by 1 to access the next RAM location for next read/write operation (*solid line in Figure 2-7*). Whenever the page address pointer finishes accessing the end page 5, it is reset back to page 1 and row address is automatically increased by 1 (*solid line in Figure 2-7*). While the end page 5 and end row 97 RAM location is accessed, the page address is reset back to 1 and the row address is reset back to 2 (*dotted line in Figure 2-7*).

	PAGE0	PAGE1	PAGE2	 PAGE5	PAGE6	PAGE7
Row 0						
Row 1						
Row 2				1		
:		Î.				
:						
Row 97		N.		>		
Row98						
:						
Row 126						
Row 127						

Figure 2-7: Example of Address Pointer Movement

Set Display Start Line (40h~7Fh) 2.1.6

This command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on. Refer to Table 2-1 for more illustrations.

2.1.7 Set Contrast Control (81h)

This command sets the Contrast Setting of the display, with a valid range from 01h to FFh. The segment output current increases as the contrast step value increase.

Set Segment Re-map (A0h/A1h) 2.1.8

This command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design. Please refer to Table 1-1.

This command only affects subsequent data input. Data already stored in GDDRAM will have no changes.

Entire Display ON (A4h/A5h) 2.1.9

A4h command enable display outputs according to the GDDRAM contents.

If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents. In other words, A4h command resumes the display from entire display "ON" stage.

A5h command forces the entire display to be "ON", regardless of the contents of the display data RAM.

2.1.10 Set Normal/Inverse Display (A6h/A7h)

This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an "ON" pixel while in inverse display a RAM data of 0 indicates an "ON" pixel.

2.1.11 Set Multiplex Ratio (A8h)

This command switches the default 64 multiplex mode to any multiplex ratio, ranging from 16 to 63. The output pads COM0~COM63 will be switched to the corresponding COM signal.

2.1.12 External or internal IREF Selection (ADh)

This double byte command supports External or Internal I_{REF} Selection.

Default A[4] = '0', Select external I_{REF} .

When A[4] = '1', Select internal I_{REF} during display ON.

2.1.13 Set Display ON/OFF (AEh/AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned OFF and the segment and common output are in V_{SS} state and high impedance state, respectively. These commands set the display to one of the two states:

- AEh : Display OFF
- AFh : Display ON

2.1.14 Set Page Start Address for Page Addressing Mode (B0h~B7h)

This command positions the page start address from 0 to 15 in GDDRAM under Page Addressing Mode. Please refer to Table 1-1 and Section 2.1.3 for details.

2.1.15 Set COM Output Scan Direction (C0h/C8h)

This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module design. Additionally, the display will show once this command is issued. For example, if this command is sent during normal display then the graphic display will be vertically flipped immediately. Please refer to Table 2-3 for details.

2.1.16 Set Display Offset (D3h)

This is a double byte command. The second command specifies the mapping of the display start line to one of COM0~COM63 (assuming that COM0 is the display start line then the display start line register is equal to 0).

For example, to move the COM16 towards the COM0 direction by 16 lines the 6-bit data in the second byte should be given as 010000b. To move in the opposite direction by 16 lines the 6-bit data should be given by 64 - 16, so the second byte would be 110000b. The following two tables (Table 2-1 and Table 2-2) show the examples of setting the command C0h/C8h and D3h.

1 [4	-	24		Out		6	-	6	-	6	Sat MUX ratio(A8h)
1	Nor	i4 mal		64 rmal		64 mal		i6 mal		i6 mal	5 Nor	i6 mal	Set MUX ratio(A8h) COM Normal / Remapped (C0h / C8h
Hardware		0		8		0		0		B		0	Display offset (D3h)
pin name		0		0		8		0		0		- B	Display start line (40h - 7Fh)
COM0	Row0	RAM0	Row8	RAM8	Row0	RAM8	Row0	RAM0	Row8	RAM8	Row0	RAM8	
COM1	Row1	RAM1	Row9	RAM9	Row1	RAM9	Row1	RAM1	Row9	RAM9	Row1	RAM9	
COM2	Row2	RAM2	Row10	RAM10	Row2	RAM10	Row2	RAM2	Row10	RAM10	Row2	RAM10	
COM3 COM4	Row3 Row4	RAM3 RAM4	Row11 Row12	RAM11 RAM12	Row3 Row4	RAM11 RAM12	Row3 Row4	RAM3 RAM4	Row11 Row12	RAM11 RAM12	Row3 Row4	RAM11 RAM12	
COM4 COM5	Row4 Row5	RAM5	Row12 Row13	RAM12 RAM13	Row4 Row5	RAM12 RAM13	Row4 Row5	RAM5	Row12 Row13	RAM12 RAM13	Row4 Row5	RAM12 RAM13	
COM6	Row6	RAM6	Row14	RAM14	Row6	RAM14	Row6	RAM6	Row14	RAM14	Row6	RAM14	
COM7	Row7	RAM7	Row15	RAM15	Row7	RAM15	Row7	RAM7	Row15	RAM15	Row7	RAM15	
COM8	Row8	RAM8	Row16	RAM16	Row8	RAM16	Row8	RAM8	Row16	RAM16	Row8	RAM16	
COM9	Row9	RAM9	Row17	RAM17	Row9	RAM17	Row9	RAM9	Row17	RAM17	Row9	RAM17	
COM10	Row10	RAM10	Row18	RAM18	Row10	RAM18	Row10	RAM10	Row18	RAM18	Row10	RAM18	
COM11	Row11	RAM11	Row19	RAM19	Row11	RAM19	Row11	RAM11	Row19	RAM19	Row11	RAM19	
COM12 COM13	Row12 Row13	RAM12 RAM13	Row20 Row21	RAM20 RAM21	Row12 Row13	RAM20 RAM21	Row12 Row13	RAM12 RAM13	Row20 Row21	RAM20 RAM21	Row12 Row13	RAM20 RAM21	
COM13 COM14	Row13 Row14	RAM13	Row21 Row22	RAM22	Row13 Row14	RAM22	Row13 Row14	RAM13	Row21 Row22	RAM22	Row13 Row14	RAM21 RAM22	
COM15	Row15	RAM15	Row23	RAM23	Row15	RAM23	Row15	RAM15	Row23	RAM23	Row15	RAM23	
COM16	Row16	RAM16	Row24	RAM24	Row16	RAM24	Row16	RAM16	Row24	RAM24	Row16	RAM24	
COM17	Row17	RAM17	Row25	RAM25	Row17	RAM25	Row17	RAM17	Row25	RAM25	Row17	RAM25	
COM18	Row18	RAM18	Row26	RAM26	Row18	RAM26	Row18	RAM18	Row26	RAM26	Row18	RAM26	
COM19	Row19	RAM19	Row27	RAM27	Row19	RAM27	Row19	RAM19	Row27	RAM27	Row19	RAM27	
COM20	Row20	RAM20	Row28	RAM28	Row20	RAM28	Row20	RAM20	Row28	RAM28	Row20	RAM28	
COM21 COM22	Row21 Row22	RAM21 RAM22	Row29 Row30	RAM29 RAM30	Row21 Row22	RAM29 RAM30	Row21 Row22	RAM21 RAM22	Row29 Row30	RAM29 RAM30	Row21 Row22	RAM29 RAM30	
COM22 COM23	Row22 Row23	RAM22 RAM23	Row30 Row31	RAM31	Row22 Row23	RAM31	Row22 Row23	RAM23	Row30 Row31	RAM31	Row22 Row23	RAM30 RAM31	
COM24	Row24	RAM24	Row32	RAM32	Row24	RAM32	Row24	RAM24	Row32	RAM32	Row24	RAM32	
COM25	Row25	RAM25	Row33	RAM33	Row25	RAM33	Row25	RAM25	Row33	RAM33	Row25	RAM33	
COM26	Row26	RAM26	Row34	RAM34	Row26	RAM34	Row26	RAM26	Row34	RAM34	Row26	RAM34	
COM27	Row27	RAM27	Row35	RAM35	Row27	RAM35	Row27	RAM27	Row35	RAM35	Row27	RAM35	
COM28	Row28	RAM28	Row36	RAM36	Row28	RAM36	Row28	RAM28	Row36	RAM36	Row28	RAM36	
COM29	Row29	RAM29	Row37	RAM37	Row29	RAM37	Row29	RAM29	Row37	RAM37	Row29	RAM37	
COM30 COM31	Row30 Row31	RAM30 RAM31	Row38 Row39	RAM38 RAM39	Row30 Row31	RAM38 RAM39	Row30 Row31	RAM30 RAM31	Row38 Row39	RAM38 RAM39	Row30 Row31	RAM38 RAM39	
COM31 COM32	Row31 Row32	RAM31 RAM32	Row39 Row40	RAM40	Row31 Row32	RAM40	Row31	RAM32	Row39 Row40	RAM40	Row31	RAM39 RAM40	
COM33	Row33	RAM33	Row41	RAM41	Row33	RAM41	Row33	RAM33	Row40	RAM41	Row33	RAM41	
COM34	Row34	RAM34	Row42	RAM42	Row34	RAM42	Row34	RAM34	Row42	RAM42	Row34	RAM42	
COM35	Row35	RAM35	Row43	RAM43	Row35	RAM43	Row35	RAM35	Row43	RAM43	Row35	RAM43	
COM36	Row36	RAM36	Row44	RAM44	Row36	RAM44	Row36	RAM36	Row44	RAM44	Row36	RAM44	
COM37	Row37	RAM37	Row45	RAM45	Row37	RAM45	Row37	RAM37	Row45	RAM45	Row37	RAM45	
COM38 COM39	Row38	RAM38	Row46	RAM46	Row38	RAM46	Row38	RAM38	Row46	RAM46	Row38	RAM46	
COM39 COM40	Row39 Row40	RAM39 RAM40	Row47 Row48	RAM47 RAM48	Row39 Row40	RAM47 RAM48	Row39 Row40	RAM39 RAM40	Row47 Row48	RAM47 RAM48	Row39 Row40	RAM47 RAM48	
COM41	Row40	RAM41	Row49	RAM49	Row41	RAM49	Row41	RAM41	Row49	RAM49	Row41	RAM49	
COM42	Row42	RAM42	Row50	RAM50	Row42	RAM50	Row42	RAM42	Row50	RAM50	Row42	RAM50	
COM43	Row43	RAM43	Row51	RAM51	Row43	RAM51	Row43	RAM43	Row51	RAM51	Row43	RAM51	
COM44	Row44	RAM44	Row52	RAM52	Row44	RAM52	Row44	RAM44	Row52	RAM52	Row44	RAM52	
COM45	Row45	RAM45	Row53	RAM53	Row45	RAM53	Row45	RAM45	Row53	RAM53	Row45	RAM53	
COM46	Row46	RAM46	Row54	RAM54	Row46	RAM54	Row46	RAM46	Row54	RAM54	Row46	RAM54	
COM47	Row47	RAM47	Row55	RAM55	Row47	RAM55	Row47	RAM47	Row55	RAM55	Row47	RAM55	
COM48 COM49	Row48 Row49	RAM48 RAM49	Row56 Row57	RAM56 RAM57	Row48 Row49	RAM56 RAM57	Row48 Row49	RAM48 RAM49	_	-	Row48 Row49	RAM56 RAM57	
COM49 COM50	Row50	RAM50	Row57 Row58	RAM58	Row50	RAM58	Row50	RAM50	_	-	Row50	RAM57	
COM51	Row51	RAM51	Row59	RAM59	Row51	RAM59	Row51	RAM51	-	-	Row51	RAM59	
COM52	Row52	RAM52	Row60	RAM60	Row52	RAM60	Row52	RAM52	-	-	Row52	RAM60	
COM53	Row53	RAM53	Row61	RAM61	Row53	RAM61	Row53	RAM53	-	-	Row53	RAM61	
COM54	Row54	RAM54	Row62	RAM62	Row54	RAM62	Row54	RAM54	-	-	Row54	RAM62	
COM55	Row55	RAM55	Row63	RAM63	Row55	RAM63	Row55	RAM55	-	-	Row55	RAM63	
COM56	Row56	RAM56	Row0	RAM0	Row56	RAM0	-	-	Row0	RAM0	-	-	
COM57 COM58	Row57 Row58	RAM57 RAM58	Row1 Row2	RAM1 RAM2	Row57 Row58	RAM1 RAM2	-	-	Row1 Row2	RAM1 RAM2	-	-	
COM58 COM59	Row58 Row59	RAM50 RAM59	Row2 Row3	RAM2 RAM3	Row58 Row59	RAM2 RAM3	-	-	Row2 Row3	RAM2 RAM3		-	
COM60	Row60	RAM60	Row4	RAM4	Row60	RAM4	_	-	Row4	RAM4	_	_	
COM61	Row61	RAM61	Row5	RAM5	Row61	RAM5	-	-	Row5	RAM5	-	-	
COM62	Row62	RAM62	Row6	RAM6	Row62	RAM6	-	-	Row6	RAM6	-	-	
COM63	Row63	RAM63	Row7	RAM7	Row63	RAM7	-	-	Row7	RAM7	-	-	1
Display	6	a)	(b)	(c)	6	d)	(6	e)	(f)	
examples		,	(- /		- ,		- ,	(-,		,	

Table 2-2: Example of Set	Display Offset a	and Display Start L	ine with Remap

Table 2-2: Example of Set Display Offset and Display Start Line with Remap Output								
	64	64	64	48	48	48	48	Set MUX ratio(A8h)
Hardware	Remap 0	Remap 8	Remap 0	Remap 0	Remap 8	Remap 0	Remap 8	COM Normal / Remapped (C0h / C8h) Display offset (D3h)
pin name	0 Row63 RAM63	0 Pow7 PAM7	8 Row63 RAM7	0 Powd7 PAM47	0	8 Pow47 PAM55	16	Display start line (40h - 7Fh)
COM0 COM1	Row63 RAM63 Row62 RAM62	Row7 RAM7 Row6 RAM6	Row63 RAM7 Row62 RAM6	Row47 RAM47 Row46 RAM46		Row47 RAM55 Row46 RAM54		
COM2	Row61 RAM61	Row5 RAM5	Row61 RAM5	Row45 RAM45		Row45 RAM53		
COM3 COM4	Row60 RAM60 Row59 RAM59	Row4 RAM4 Row3 RAM3	Row60 RAM4 Row59 RAM3	Row44 RAM44 Row43 RAM43		Row44 RAM52 Row43 RAM51		
COM5	Row58 RAM58	Row2 RAM2	Row58 RAM2	Row42 RAM42		Row42 RAM50		
COM6 COM7	Row57 RAM57 Row56 RAM56	Row1 RAM1 Row0 RAM0	Row57 RAM1 Row56 RAM0	Row41 RAM41 Row40 RAM40		Row41 RAM49 Row40 RAM48		
COM8	Row55 RAM55	Row63 RAM63	Row55 RAM63	Row39 RAM39	Row47 RAM47	Row39 RAM47	Row47 RAM63	
COM9 COM10	Row54 RAM54 Row53 RAM53	Row62 RAM62 Row61 RAM61	Row54 RAM62 Row53 RAM61	Row38 RAM38 Row37 RAM37	Row46 RAM46 Row45 RAM45	Row38 RAM46 Row37 RAM45	Row46 RAM62 Row45 RAM61	
COM11	Row52 RAM52	Row60 RAM60	Row52 RAM60	Row36 RAM36	Row44 RAM44	Row36 RAM44	Row44 RAM60	
COM12 COM13	Row51 RAM51 Row50 RAM50	Row59 RAM59 Row58 RAM58	Row51 RAM59 Row50 RAM58	Row35 RAM35 Row34 RAM34	Row43 RAM43 Row42 RAM42	Row35 RAM43 Row34 RAM42	Row43 RAM59 Row42 RAM58	
COM14	Row49 RAM49	Row57 RAM57	Row49 RAM57	Row33 RAM33	Row41 RAM41	Row33 RAM41	Row41 RAM57	
COM15 COM16	Row48 RAM48 Row47 RAM47	Row56 RAM56 Row55 RAM55	Row48 RAM56 Row47 RAM55	Row32 RAM32 Row31 RAM31	Row40 RAM40 Row39 RAM39	Row32 RAM40 Row31 RAM39	Row40 RAM56 Row39 RAM55	
COM17	Row46 RAM46	Row54 RAM54	Row46 RAM54	Row30 RAM30	Row38 RAM38	Row30 RAM38	Row38 RAM54	
COM18	Row45 RAM45	Row53 RAM53	Row45 RAM53	Row29 RAM29	Row37 RAM37	Row29 RAM37	Row37 RAM53	
COM19 COM20	Row44 RAM44 Row43 RAM43	Row52 RAM52 Row51 RAM51	Row44 RAM52 Row43 RAM51	Row28 RAM28 Row27 RAM27	Row36 RAM36 Row35 RAM35	Row28 RAM36 Row27 RAM35	Row36 RAM52 Row35 RAM51	
COM21	Row42 RAM42	Row50 RAM50	Row42 RAM50	Row26 RAM26	Row34 RAM34	Row26 RAM34	Row34 RAM50	
COM22 COM23	Row41 RAM41 Row40 RAM40	Row49 RAM49 Row48 RAM48	Row41 RAM49 Row40 RAM48	Row25 RAM25 Row24 RAM24	Row33 RAM33 Row32 RAM32	Row25 RAM33 Row24 RAM32	Row33 RAM49 Row32 RAM48	
COM24	Row39 RAM39	Row47 RAM47	Row39 RAM47	Row23 RAM23	Row31 RAM31	Row23 RAM31	Row31 RAM47	
COM25 COM26	Row38 RAM38 Row37 RAM37	Row46 RAM46 Row45 RAM45	Row38 RAM46 Row37 RAM45	Row22 RAM22 Row21 RAM21	Row30 RAM30 Row29 RAM29	Row22 RAM30 Row21 RAM29	Row30 RAM46 Row29 RAM45	
COM27	Row36 RAM36	Row44 RAM44	Row36 RAM44	Row20 RAM20	Row28 RAM28	Row20 RAM28	Row28 RAM44	4
COM28 COM29	Row35 RAM35 Row34 RAM34	Row43 RAM43 Row42 RAM42	Row35 RAM43 Row34 RAM42	Row19 RAM19 Row18 RAM18	Row27 RAM27 Row26 RAM26	Row19 RAM27 Row18 RAM26	Row27 RAM43 Row26 RAM42	
COM30	Row33 RAM33	Row41 RAM41	Row33 RAM41	Row17 RAM17	Row25 RAM25	Row17 RAM25	Row25 RAM41	
COM31 COM32	Row32 RAM32 Row31 RAM31	Row40 RAM40 Row39 RAM39	Row32 RAM40 Row31 RAM39	Row16 RAM16 Row15 RAM15	Row24 RAM24 Row23 RAM23	Row16 RAM24 Row15 RAM23	Row24 RAM40 Row23 RAM39	
COM32	Row30 RAM30	Row38 RAM38	Row30 RAM38	Row14 RAM14	Row22 RAM22	Row14 RAM22	Row22 RAM38	
COM34 COM35	Row29 RAM29 Row28 RAM28	Row37 RAM37 Row36 RAM36	Row29 RAM37 Row28 RAM36	Row13 RAM13 Row12 RAM12	Row21 RAM21 Row20 RAM20	Row13 RAM21 Row12 RAM20	Row21 RAM37 Row20 RAM36	
COM35 COM36	Row28 RAM28 Row27 RAM27	Row36 RAM36 Row35 RAM35	Row27 RAM35	Row12 RAM12 Row11 RAM11	Row20 RAM20 Row19 RAM19	Row12 RAM20 Row11 RAM19	Row20 RAM36 Row19 RAM35	
COM37	Row26 RAM26	Row34 RAM34	Row26 RAM34	Row10 RAM10	Row18 RAM18	Row10 RAM18	Row18 RAM34	
COM38 COM39	Row25 RAM25 Row24 RAM24	Row33 RAM33 Row32 RAM32	Row25 RAM33 Row24 RAM32	Row9 RAM9 Row8 RAM8	Row17 RAM17 Row16 RAM16	Row9 RAM17 Row8 RAM16	Row17 RAM33 Row16 RAM32	
COM40	Row23 RAM23	Row31 RAM31	Row23 RAM31	Row7 RAM7	Row15 RAM15	Row7 RAM15	Row15 RAM31	
COM41 COM42	Row22 RAM22 Row21 RAM21	Row30 RAM30 Row29 RAM29	Row22 RAM30 Row21 RAM29	Row6 RAM6 Row5 RAM5	Row14 RAM14 Row13 RAM13	Row6 RAM14 Row5 RAM13	Row14 RAM30 Row13 RAM29	
COM43	Row20 RAM20	Row28 RAM28	Row20 RAM28	Row4 RAM4	Row12 RAM12	Row4 RAM12	Row12 RAM28	
COM44 COM45	Row19 RAM19 Row18 RAM18	Row27 RAM27 Row26 RAM26	Row19 RAM27 Row18 RAM26	Row3 RAM3 Row2 RAM2	Row11 RAM11 Row10 RAM10	Row3 RAM11 Row2 RAM10	Row11 RAM27 Row10 RAM26	
COM46	Row17 RAM17	Row25 RAM25	Row17 RAM25	Row1 RAM1	Row9 RAM9	Row1 RAM9	Row9 RAM25	
COM47 COM48	Row16 RAM16 Row15 RAM15	Row24 RAM24 Row23 RAM23	Row16 RAM24 Row15 RAM23	Row0 RAM0	Row8 RAM8 Row7 RAM7	Row0 RAM8	Row8 RAM24 Row7 RAM23	
COM49	Row14 RAM14	Row22 RAM22	Row14 RAM22		Row6 RAM6		Row6 RAM22	
COM50 COM51	Row13 RAM13 Row12 RAM12	Row21 RAM21 Row20 RAM20	Row13 RAM21 Row12 RAM20		Row5 RAM5 Row4 RAM4		Row5 RAM21 Row4 RAM20	
COM52	Row11 RAM11	Row19 RAM19	Row11 RAM19		Row3 RAM3		Row3 RAM19	
COM53 COM54	Row10 RAM10 Row9 RAM9	Row18 RAM18 Row17 RAM17	Row10 RAM18 Row9 RAM17		Row2 RAM2 Row1 RAM1		Row2 RAM18 Row1 RAM17	
COM55	Rows RAM8	Row16 RAM16	Rows RAM16		RowU RAMU		RowU RAM16	
COM56 COM57	Row7 RAM7 Row6 RAM6	Row15 RAM15 Row14 RAM14	Row7 RAM15 Row6 RAM14					
COM58	Row5 RAM5	Row13 RAM13	Row5 RAM13					
COM59	Row4 RAM4	Row12 RAM12	Row4 RAM12					
COM60 COM61	Row3 RAM3 Row2 RAM2	Row11 RAM11 Row10 RAM10	Row3 RAM11 Row2 RAM10					
COM62	Row1 RAM1	Row9 RAM9	Row1 RAM9					
COM63 Display	Row0 RAM0	Row8 RAM8	Row0 RAM8					-
examples	(a)	(b)	(c)	(d)	(e)	(f)	(g)	
							JMD 102	_
		SYSTEC SOLOMO						
	N.		KSTECH OLOMON		8ASTECH SOLOMON			
	(a)		(b)		(c)		d)	
		(a) MU 105	HJELSAS			r r	u)	
	NO		NOMOJO	5.00 D	SYSTECH SOLOMON			
			G	사망하는 다		<u>ે</u> (00101101	
			1	1949 - A.	G	1.11.	SOLOMON SYSTECH	
		(e)	(f)		(g)	ļ	(RAM)	
			(1)		(6)		(10,101)	

2.1.17 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)

This command consists of two functions:

- Display Clock Divide Ratio (D) (A[3:0]) Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 0000b. Please refer to section 6.3 in SSD1312 datasheet for the details relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4]) Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 1000b.

2.1.18 Set Pre-charge Period (D9h)

This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK, where RESET equals to 2 DCLKs.

2.1.19 Set SEG Pins Hardware Configuration (DAh)

This command sets the SEG signals pin configuration to match the OLED panel hardware layout. SEG Odd / Even (Left / Right) and Top / Bottom connections are software selectable, thus there are total of 8 cases and they are shown on the followings:

	Case	Oddeven (1) / Sequential (0)	SEG Remap	Left / Right Swap	Remark
	no.	Command : DAh -> A[4]	Command : A0h / A1h	Command : $DAh \rightarrow A[5]$	
	1	0	0	0	
	2	0	0	1	
	3	0	1	0	
-	4	0	1	1	
	5	1	0	0	Default
	6	1	0	1	
	7	1	1	0	
	8	1	1	1	

Table 2-3 : SEG Pins Hardware Configuration

Note:

⁽¹⁾ The above eight figures are all with bump pads being faced up.

2.1.20 Set V_{COMH} Deselect Level (DBh)

This command adjusts the VCOMH regulator output. Please refer Table 1-1 for details.

2.1.21 NOP (E3h)

No Operation Command.

2.1.22 Charge Pump Setting (8Dh)

This command controls the ON/OFF of the Charge Pump. The Charge Pump must be enabled by the following command sequence:

8Dh;	Charge Pump Setting
12h / 52h / 72h / 92h;	Enable Charge Pump at different output mode
AFh;	Display ON

2.1.23 Set Command Lock (FDh)

This double byte command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is called "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resumes from the "Lock" state, and the driver IC will then respond to the command and memory access.

2.1.24 Status register Read

This command is issued by setting D/C# ON LOW during a data read (See AC timing section for parallel interface waveform). It allows the MCU to monitor the internal status of the chip. No status read is provided for serial mode.