You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

531 lines
17 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
  1. #include "zcanreceiver_master.hpp"
  2. #include "project_configs.h"
  3. #include "sdk\components\zprotocols\errorcode\errorcode.hpp"
  4. #ifdef HAL_CAN_MODULE_ENABLED
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. using namespace iflytop;
  9. using namespace zcr;
  10. #define TAG "ZCanCommnaderMaster"
  11. #define OVER_TIME_MS 5
  12. #define MASK_32BIT(off) (0x01 << (off))
  13. ZCanCommnaderMaster::CFG *ZCanCommnaderMaster::createCFG() {
  14. CFG *cfg = new CFG();
  15. ZASSERT(cfg != NULL);
  16. cfg->deviceId = 0;
  17. #ifdef STM32F103xB
  18. cfg->canHandle = &hcan;
  19. #else
  20. cfg->canHandle = &hcan1;
  21. #endif
  22. cfg->canFilterIndex0 = 0;
  23. cfg->maxFilterNum = 7;
  24. cfg->rxfifoNum = CAN_RX_FIFO0;
  25. return cfg;
  26. }
  27. void ZCanCommnaderMaster::init(CFG *cfg) {
  28. HAL_StatusTypeDef hal_status;
  29. m_config = cfg;
  30. m_on_packet_map_lock.init();
  31. txlock.init();
  32. /**
  33. * @brief ʼCAN
  34. */
  35. /**
  36. * @brief ʼϢbuf
  37. */
  38. m_canPacketRxBuffer[0].dataIsReady = false;
  39. m_canPacketRxBuffer[0].id = 1; // ֻ����������������Ϣ
  40. m_canPacketRxBuffer[0].m_canPacketNum = 0;
  41. /**
  42. * @brief ʼ
  43. */
  44. hal_status = initializeFilter();
  45. if (hal_status != HAL_OK) {
  46. ZLOGE(TAG, "start can initializeFilter fail\r\n");
  47. return;
  48. }
  49. /**
  50. * @brief CAN
  51. */
  52. hal_status = HAL_CAN_Start(m_config->canHandle); // ����CAN
  53. if (hal_status != HAL_OK) {
  54. ZLOGE(TAG, "start can fail\r\n");
  55. return;
  56. }
  57. /**
  58. * @brief ص
  59. */
  60. ZCanIRQDispatcher::instance().regListener(this);
  61. HAL_StatusTypeDef status = activateRxIT();
  62. if (status != HAL_OK) {
  63. ZLOGE(TAG, "activateRxIT fail\r\n");
  64. return;
  65. }
  66. m_loopThread.init("ZCanCommnaderMaster", 1024, osPriorityAboveNormal);
  67. m_loopThread.start([this]() {
  68. while (true) {
  69. loop();
  70. osDelay(1);
  71. }
  72. });
  73. }
  74. HAL_StatusTypeDef ZCanCommnaderMaster::initializeFilter() {
  75. /**
  76. * @brief ID֡ʽ
  77. * [ 27:0 ]
  78. * [ STDID ] [ EXTID ]
  79. * [11 :9] [8:6] [5:0] [17:16] [15:8] [7:0]
  80. * ȼ ֡ ĿID ԴID
  81. */
  82. HAL_StatusTypeDef HAL_Status;
  83. CAN_FilterTypeDef sFilterConfig;
  84. uint32_t filterId;
  85. uint32_t mask;
  86. memset(&sFilterConfig, 0, sizeof(sFilterConfig));
  87. sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; // ��ΪMASKģʽ
  88. sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; // CAN_FILTERSCALE_16BIT
  89. sFilterConfig.FilterFIFOAssignment = m_config->rxfifoNum; // ������������rxfifoNum
  90. sFilterConfig.FilterActivation = ENABLE; // ����������
  91. sFilterConfig.SlaveStartFilterBank = m_config->maxFilterNum; // slave filter start index
  92. /*******************************************************************************
  93. * Ϣ *
  94. *******************************************************************************/
  95. filterId = (0); //
  96. mask = (0); //
  97. sFilterConfig.FilterBank = m_config->canFilterIndex0; //
  98. sFilterConfig.FilterMaskIdLow = mask & 0xffff; //
  99. sFilterConfig.FilterMaskIdHigh = (mask & 0xffff0000) >> 16; //
  100. sFilterConfig.FilterIdLow = filterId & 0xffff; //
  101. sFilterConfig.FilterIdHigh = (filterId & 0xffff0000) >> 16; //
  102. HAL_Status = HAL_CAN_ConfigFilter(m_config->canHandle, &sFilterConfig);
  103. if (HAL_Status != HAL_OK) {
  104. ZLOGE(TAG, "HAL_CAN_ConfigFilter filter0 fail");
  105. return HAL_Status;
  106. }
  107. ZLOGI(TAG, "HAL_CAN_ConfigFilter filterID1 %08x", filterId >> 3);
  108. return HAL_Status;
  109. }
  110. int32_t ZCanCommnaderMaster::sendCmdAndReceiveBuf(int32_t cmdid, int32_t subModuleid, int32_t *param, size_t npara, uint8_t *ack, int32_t *rxsize, int overtime_ms) {
  111. zcr_cmd_header_t *cmdheader = (zcr_cmd_header_t *)txbuff;
  112. cmdheader->packetType = kptv2_cmd;
  113. cmdheader->packetindex = generateFreeIndex();
  114. cmdheader->cmdMainId = MODULE_CMDID(cmdid);
  115. cmdheader->cmdSubId = CMD_SUB_ID(cmdid);
  116. cmdheader->subModuleid = subModuleid;
  117. // ZLOGI(TAG, "sendCmd %d %d %d %d", cmdheader->packetindex, cmdheader->cmdMainId, cmdheader->cmdSubId, cmdheader->subModuleid);
  118. int32_t *sendparam = (int32_t *)cmdheader->data;
  119. for (size_t i = 0; i < npara; i++) {
  120. sendparam[i] = param[i];
  121. }
  122. int32_t txlen = sizeof(zcr_cmd_header_t) + npara * sizeof(int32_t);
  123. // ע��������
  124. bool rxdataIsReady = false;
  125. int32_t errocode = 0;
  126. regListener(cmdheader->packetindex, [this, &rxdataIsReady, &ack, &rxsize, &errocode](CanPacketRxBuffer *report) {
  127. if (report->get_cmdheader()->packetType == kptv2_error_ack) {
  128. auto *error_ack = report->get_data_as<int32_t>();
  129. errocode = *error_ack;
  130. } else if (*rxsize < report->get_datalen()) {
  131. errocode = err::kbuffer_not_enough;
  132. } else {
  133. *rxsize = report->get_datalen();
  134. memcpy(ack, report->get_data(), *rxsize);
  135. }
  136. rxdataIsReady = true;
  137. });
  138. // ������Ϣ
  139. sendPacket(txbuff, txlen);
  140. // �ȴ���ִ
  141. uint32_t enterticket = zos_get_tick();
  142. while (!rxdataIsReady) {
  143. if (zos_haspassedms(enterticket) > (uint32_t)overtime_ms) {
  144. ZLOGE(TAG, "sendPacketBlock timeout");
  145. unregListener(cmdheader->packetindex);
  146. return err::kovertime;
  147. }
  148. osDelay(1);
  149. }
  150. unregListener(cmdheader->packetindex);
  151. return errocode;
  152. }
  153. int32_t ZCanCommnaderMaster::sendCmd(int32_t cmdid, int32_t subModuleid, int32_t *param, size_t npara, int32_t *ack, size_t nack, int overtime_ms) {
  154. zcr_cmd_header_t *cmdheader = (zcr_cmd_header_t *)txbuff;
  155. cmdheader->packetType = kptv2_cmd;
  156. cmdheader->packetindex = generateFreeIndex();
  157. cmdheader->cmdMainId = MODULE_CMDID(cmdid);
  158. cmdheader->cmdSubId = CMD_SUB_ID(cmdid);
  159. cmdheader->subModuleid = subModuleid;
  160. // ZLOGI(TAG, "sendCmd %d %d %d %d", cmdheader->packetindex, cmdheader->cmdMainId, cmdheader->cmdSubId, cmdheader->subModuleid);
  161. int32_t *sendparam = (int32_t *)cmdheader->data;
  162. for (size_t i = 0; i < npara; i++) {
  163. sendparam[i] = param[i];
  164. }
  165. int32_t txlen = sizeof(zcr_cmd_header_t) + npara * sizeof(int32_t);
  166. /**
  167. * @brief ע
  168. */
  169. bool rxdataIsReady = false;
  170. int32_t errocode = 0;
  171. regListener(cmdheader->packetindex, [this, &rxdataIsReady, &ack, &nack, &errocode](CanPacketRxBuffer *report) {
  172. // ZLOGI(TAG, "....................................");
  173. if (report->get_cmdheader()->packetType == kptv2_error_ack) {
  174. auto *error_ack = report->get_data_as<int32_t>();
  175. errocode = *error_ack;
  176. // ZLOGI(TAG, "error_ack %d %s", *error_ack, err::error2str(*error_ack));
  177. } else {
  178. // ZLOGI(TAG, "%d %d", report->get_datalen(), nack);
  179. int32_t *rxbuf = report->get_data_as<int32_t>();
  180. if (ack != nullptr && nack != 0) {
  181. for (size_t i = 0; i < nack; i++) {
  182. // ZLOGI(TAG, "ack[%d] = %d", i, rxbuf[i]);
  183. ack[i] = rxbuf[i];
  184. }
  185. }
  186. }
  187. rxdataIsReady = true;
  188. });
  189. /**
  190. * @brief Ϣ
  191. */
  192. sendPacket(txbuff, txlen);
  193. /**
  194. * @brief ȴִ
  195. */
  196. uint32_t enterticket = zos_get_tick();
  197. while (!rxdataIsReady) {
  198. if (zos_haspassedms(enterticket) > (uint32_t)overtime_ms) {
  199. // ZLOGE(TAG, "sendPacketBlock timeout");
  200. unregListener(cmdheader->packetindex);
  201. return err::kovertime;
  202. }
  203. osDelay(1);
  204. }
  205. unregListener(cmdheader->packetindex);
  206. return errocode;
  207. }
  208. void ZCanCommnaderMaster::regEventPacketListener(onpacket_t on_event) { m_on_event = on_event; }
  209. void ZCanCommnaderMaster::regListener(uint16_t index, zcan_commnader_master_onpacket_t onack) {
  210. zlock_guard l(m_on_packet_map_lock);
  211. if (m_on_packet_map.size() > 10000) {
  212. ZLOGW(TAG, "m_on_packet_map.size() = %d>10000", m_on_packet_map.size());
  213. }
  214. ZCanCommnaderMasterListener listener;
  215. listener.on_ack = onack;
  216. m_on_packet_map[index] = listener;
  217. }
  218. void ZCanCommnaderMaster::unregListener(uint16_t index) {
  219. zlock_guard l(m_on_packet_map_lock);
  220. auto it = m_on_packet_map.find(index);
  221. if (it != m_on_packet_map.end()) {
  222. m_on_packet_map.erase(it);
  223. }
  224. }
  225. int ZCanCommnaderMaster::getListenerNum() {
  226. zlock_guard l(m_on_packet_map_lock);
  227. return m_on_packet_map.size();
  228. }
  229. bool ZCanCommnaderMaster::isListenerReg(uint16_t index) {
  230. zlock_guard l(m_on_packet_map_lock);
  231. auto it = m_on_packet_map.find(index);
  232. if (it != m_on_packet_map.end()) {
  233. return true;
  234. }
  235. return false;
  236. }
  237. void ZCanCommnaderMaster::callListener(CanPacketRxBuffer *report) {
  238. uint16_t index = report->get_cmdheader()->packetindex;
  239. if (report->get_cmdheader()->packetType == kptv2_ack || report->get_cmdheader()->packetType == kptv2_error_ack) {
  240. zlock_guard l(m_on_packet_map_lock);
  241. auto it = m_on_packet_map.find(index);
  242. if (it != m_on_packet_map.end()) {
  243. if (it->second.on_ack) it->second.on_ack(report);
  244. }
  245. }
  246. if (report->get_cmdheader()->packetType == kptv2_event) {
  247. if (m_on_event) m_on_event(report->id, report->get_cmdheader(), report->get_datalen());
  248. }
  249. }
  250. uint16_t ZCanCommnaderMaster::generateFreeIndex() {
  251. m_index_off++;
  252. uint16_t count = 0;
  253. if (m_index_off == 0) m_index_off = 1;
  254. while (isListenerReg(m_index_off)) {
  255. m_index_off++;
  256. if (m_index_off == 0) m_index_off = 1;
  257. count++;
  258. if (count == 0) {
  259. ZLOGE(TAG, "generateFreeIndex fail");
  260. NVIC_SystemReset();
  261. }
  262. }
  263. return m_index_off;
  264. }
  265. void ZCanCommnaderMaster::sendPacket(uint8_t *packet, size_t len) {
  266. zlock_guard txlock_guard(txlock);
  267. /**
  268. * @brief
  269. */
  270. int npacket = len / 8 + (len % 8 == 0 ? 0 : 1);
  271. if (npacket > 255) {
  272. ZLOGE(TAG, "sendPacket fail, len:%d", len);
  273. return;
  274. }
  275. int finalpacketlen = len % 8 == 0 ? 8 : len % 8;
  276. for (uint8_t i = 0; i < npacket; i++) {
  277. bool suc = false;
  278. if (i == npacket - 1) {
  279. suc = sendPacketSub(npacket, i, packet + i * 8, finalpacketlen, OVER_TIME_MS);
  280. } else {
  281. suc = sendPacketSub(npacket, i, packet + i * 8, 8, OVER_TIME_MS);
  282. }
  283. if (!suc) {
  284. // ZLOGE(TAG, "sendPacket fail, packet(%d:%d)", npacket, i);
  285. return;
  286. }
  287. }
  288. }
  289. bool ZCanCommnaderMaster::sendPacketSub(int npacket, int packetIndex, uint8_t *packet, size_t len, int overtimems) {
  290. // ZLOGI(TAG, "sendPacketSub(%d:%d)", npacket, packetIndex);
  291. CAN_TxHeaderTypeDef pHeader;
  292. uint8_t aData[8] /*8byte table*/;
  293. uint32_t txMailBox = 0;
  294. uint32_t enterticket = zos_get_tick();
  295. memset(&pHeader, 0, sizeof(pHeader));
  296. memset(aData, 0, sizeof(aData));
  297. pHeader.StdId = 0x00;
  298. pHeader.ExtId = (m_config->deviceId << 16) | (npacket << 8) | packetIndex;
  299. pHeader.IDE = CAN_ID_EXT;
  300. pHeader.RTR = CAN_RTR_DATA;
  301. pHeader.DLC = len;
  302. pHeader.TransmitGlobalTime = DISABLE;
  303. memcpy(aData, packet, len);
  304. m_lastTransmitStatus = HAL_CAN_AddTxMessage(m_config->canHandle, &pHeader, aData, &txMailBox);
  305. if (m_lastTransmitStatus != HAL_OK) {
  306. ZLOGE(TAG, "HAL_CAN_AddTxMessage fail");
  307. return false;
  308. }
  309. while (HAL_CAN_IsTxMessagePending(m_config->canHandle, txMailBox)) {
  310. if (zos_haspassedms(enterticket) > (uint32_t)overtimems) {
  311. m_lastTransmitStatus = HAL_TIMEOUT;
  312. HAL_CAN_AbortTxRequest(m_config->canHandle, txMailBox);
  313. return false;
  314. }
  315. // m_os->sleepMS(1);
  316. }
  317. if (txPacketInterval_ms > 0) {
  318. osDelay(txPacketInterval_ms);
  319. }
  320. return true;
  321. }
  322. bool ZCanCommnaderMaster::getRxMessage(CAN_RxHeaderTypeDef *pHeader, uint8_t aData[] /*8byte table*/) {
  323. /**
  324. * @brief ȡǰFIFOл˶֡
  325. */
  326. uint32_t level = HAL_CAN_GetRxFifoFillLevel(m_config->canHandle, m_config->rxfifoNum);
  327. if (level == 0) {
  328. return false;
  329. }
  330. HAL_StatusTypeDef HAL_RetVal;
  331. HAL_RetVal = HAL_CAN_GetRxMessage(m_config->canHandle, m_config->rxfifoNum, pHeader, aData);
  332. if (HAL_OK == HAL_RetVal) {
  333. // �������յ���can��������
  334. return true;
  335. }
  336. return false;
  337. }
  338. void ZCanCommnaderMaster::initCanPacketRxBuffer(CanPacketRxBuffer *buf, uint16_t id) {
  339. if (buf == nullptr) return;
  340. buf->clear();
  341. buf->id = id;
  342. }
  343. CanPacketRxBuffer *ZCanCommnaderMaster::allocCanPacketRxBufferInIRQ(uint16_t id) {
  344. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  345. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  346. // ˵����ǰid�Ļ����Ѿ����ڣ������ڶ������������ռ���
  347. if (!m_canPacketRxBuffer[i].dataIsReady) {
  348. initCanPacketRxBuffer(&m_canPacketRxBuffer[i], id);
  349. m_canPacketRxBuffer[i].isUsed = true;
  350. return &m_canPacketRxBuffer[i];
  351. }
  352. }
  353. }
  354. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  355. if (!m_canPacketRxBuffer[i].isUsed) {
  356. initCanPacketRxBuffer(&m_canPacketRxBuffer[i], id);
  357. m_canPacketRxBuffer[i].isUsed = true;
  358. return &m_canPacketRxBuffer[i];
  359. }
  360. }
  361. return nullptr;
  362. }
  363. CanPacketRxBuffer *ZCanCommnaderMaster::findCanPacketRxBufferInIRQ(uint16_t id) {
  364. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  365. if (!m_canPacketRxBuffer[i].dataIsReady && m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  366. return &m_canPacketRxBuffer[i];
  367. }
  368. }
  369. return nullptr;
  370. }
  371. void ZCanCommnaderMaster::freeCanPacketRxBuffer(uint16_t id) {
  372. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  373. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  374. m_canPacketRxBuffer[i].isUsed = false;
  375. return;
  376. }
  377. }
  378. }
  379. void ZCanCommnaderMaster::STM32_HAL_onCAN_RxFifo0MsgPending(CAN_HandleTypeDef *canHandle) {
  380. /**
  381. * @brief ж
  382. */
  383. // ZLOG_INFO("%s\n", __FUNCTION__);
  384. // printf("------------------%s\n", __FUNCTION__);
  385. if (canHandle != m_config->canHandle) {
  386. return;
  387. }
  388. /**
  389. * @brief canյϢ
  390. */
  391. CAN_RxHeaderTypeDef pHeader;
  392. uint8_t aData[8] /*8byte table*/;
  393. while (getRxMessage(&pHeader, aData)) {
  394. /**
  395. * @brief Ϣʽ
  396. *
  397. * [2] [3bit] [8bit] [8bit] [8bit]
  398. * , from frameNum frameId
  399. */
  400. uint8_t from = (pHeader.ExtId >> 16 & 0xFF);
  401. uint8_t nframe = (pHeader.ExtId & 0xFF00) >> 8;
  402. uint8_t frameId = (pHeader.ExtId & 0x00FF);
  403. CanPacketRxBuffer *rxbuf = nullptr;
  404. if (frameId == 0) {
  405. rxbuf = allocCanPacketRxBufferInIRQ(from);
  406. rxbuf->m_npacket = nframe;
  407. } else {
  408. rxbuf = findCanPacketRxBufferInIRQ(from);
  409. }
  410. if (!rxbuf) return;
  411. if (rxbuf->m_canPacketNum < ZARRAY_SIZE(rxbuf->m_canPacket)) {
  412. rxbuf->m_canPacket[rxbuf->m_canPacketNum].pHeader = pHeader;
  413. memcpy(rxbuf->m_canPacket[rxbuf->m_canPacketNum].aData, aData, 8);
  414. rxbuf->m_canPacketNum++;
  415. }
  416. /**
  417. * @brief
  418. */
  419. if (nframe == frameId + 1) {
  420. rxbuf->dataIsReady = true;
  421. if ((rxbuf->m_canPacketNum) != rxbuf->m_npacket) rxbuf->lostpacket = true;
  422. }
  423. }
  424. // deactivateRxIT();
  425. }
  426. void ZCanCommnaderMaster::STM32_HAL_onCAN_Error(CAN_HandleTypeDef *canHandle) {
  427. if (canHandle != m_config->canHandle) {
  428. return;
  429. }
  430. ZLOGE(TAG, "onCAN_Error\r\n");
  431. }
  432. void ZCanCommnaderMaster::processReadyPacket(CanPacketRxBuffer *rxbuf) {
  433. int dataoff = 0;
  434. for (size_t i = 0; i < rxbuf->m_canPacketNum; i++) {
  435. memcpy(rxbuf->rxdata + dataoff, rxbuf->m_canPacket[i].aData, rxbuf->m_canPacket[i].pHeader.DLC);
  436. dataoff += rxbuf->m_canPacket[i].pHeader.DLC;
  437. rxbuf->rxdataSize = dataoff;
  438. }
  439. if (rxbuf->lostpacket) {
  440. ZLOGE(TAG, "lostpacket %d %d", rxbuf->m_canPacketNum, rxbuf->m_npacket);
  441. } else {
  442. callListener(rxbuf);
  443. }
  444. rxbuf->dataIsReady = false;
  445. }
  446. void ZCanCommnaderMaster::loop() {
  447. /**
  448. * @brief MainLoop
  449. */
  450. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  451. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].dataIsReady) {
  452. processReadyPacket(&m_canPacketRxBuffer[i]);
  453. }
  454. }
  455. }
  456. HAL_StatusTypeDef ZCanCommnaderMaster::activateRxIT() {
  457. HAL_StatusTypeDef hal_status = HAL_ERROR;
  458. if (m_config->rxfifoNum == CAN_RX_FIFO0) {
  459. hal_status = HAL_CAN_ActivateNotification(m_config->canHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  460. } else if (m_config->rxfifoNum == CAN_RX_FIFO1) {
  461. hal_status = HAL_CAN_ActivateNotification(m_config->canHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  462. } else {
  463. ZLOGE(TAG, "start can HAL_CAN_ActivateNotification CAN_IT_RX_FIFO0_MSG_PENDING fail\r\n");
  464. return hal_status;
  465. }
  466. return hal_status;
  467. }
  468. HAL_StatusTypeDef ZCanCommnaderMaster::deactivateRxIT() {
  469. HAL_StatusTypeDef hal_status = HAL_ERROR;
  470. if (m_config->rxfifoNum == CAN_RX_FIFO0) {
  471. hal_status = HAL_CAN_DeactivateNotification(m_config->canHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  472. } else if (m_config->rxfifoNum == CAN_RX_FIFO1) {
  473. hal_status = HAL_CAN_DeactivateNotification(m_config->canHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  474. } else {
  475. ZLOGE(TAG, "start can HAL_CAN_ActivateNotification CAN_IT_RX_FIFO0_MSG_PENDING fail\r\n");
  476. return hal_status;
  477. }
  478. return hal_status;
  479. }
  480. size_t ZCanCommnaderMaster::safe_memcpy(void *dst, size_t dst_max_size, void *src, size_t src_len) { //
  481. size_t cpysize = dst_max_size < src_len ? dst_max_size : src_len;
  482. memcpy(dst, src, cpysize);
  483. return cpysize;
  484. }
  485. #endif