You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

418 lines
14 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
  1. #if 1
  2. #include "ztmc4361A.hpp"
  3. #ifdef HAL_SPI_MODULE_ENABLED
  4. #include <stdarg.h>
  5. #include "../basic/basic.hpp"
  6. #include "./TMC4361A/TMC4361A.h"
  7. #include "sdk/os/zos.hpp"
  8. using namespace iflytop;
  9. #define PRV_FIELD_WRITE(address, mask, shift, value) (writeInt(address, FIELD_SET(readInt(address), mask, shift, value)))
  10. #define PRV_FIELD_READ(address, mask, shift) FIELD_GET(readInt(address), mask, shift)
  11. #define SET_PIN(pin, val) \
  12. if (pin) { \
  13. pin->setState(val); \
  14. }
  15. #if 1
  16. void TMC4361A::readWriteArray(uint8_t *data, size_t length) {
  17. m_csgpio->setState(false);
  18. // zchip_clock_early_delayus(10);
  19. zchip_clock_early_delayus(10);
  20. HAL_SPI_TransmitReceive(m_spi, data, data, length, 1000);
  21. m_csgpio->setState(true);
  22. }
  23. void TMC4361A::writeInt(uint8_t address, int32_t value) { writeDatagram(address, BYTE(value, 3), BYTE(value, 2), BYTE(value, 1), BYTE(value, 0)); }
  24. int32_t TMC4361A::readInt(uint8_t address) {
  25. CriticalContext cc;
  26. int value;
  27. uint8_t data[5];
  28. address = TMC_ADDRESS(address);
  29. if (!TMC_IS_READABLE(m_registerAccessTable[address])) return m_defaultRegisterResetState[address];
  30. data[0] = address;
  31. readWriteArray(&data[0], 5);
  32. data[0] = address;
  33. readWriteArray(&data[0], 5);
  34. m_status = data[0];
  35. value = ((uint32_t)data[1] << 24) | ((uint32_t)data[2] << 16) | (data[3] << 8) | data[4];
  36. return value;
  37. }
  38. void TMC4361A::writeDatagram(uint8_t address, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4) {
  39. CriticalContext cc;
  40. int value;
  41. uint8_t data[5] = {static_cast<uint8_t>(address | static_cast<uint8_t>(TMC4361A_WRITE_BIT)), x1, x2, x3, x4};
  42. readWriteArray(&data[0], 5);
  43. m_status = data[0];
  44. value = ((uint32_t)x1 << 24) | ((uint32_t)x2 << 16) | (x3 << 8) | x4;
  45. // Write to the shadow register and mark the register dirty
  46. address = TMC_ADDRESS(address);
  47. shadowRegister[address] = value;
  48. }
  49. void TMC4361A::readWriteCover(uint8_t *data, size_t length) {
  50. CriticalContext cc;
  51. // Buffering old values to not interrupt manual covering
  52. int32_t old_high = shadowRegister[TMC4361A_COVER_HIGH_WR];
  53. int32_t old_low = shadowRegister[TMC4361A_COVER_LOW_WR];
  54. // Check if datagram length is valid
  55. if (length == 0 || length > 8) return;
  56. uint8_t bytes[8] = {0};
  57. uint32_t tmp;
  58. size_t i;
  59. // Copy data into buffer of maximum cover datagram length (8 bytes)
  60. for (i = 0; i < length; i++) bytes[i] = data[length - i - 1];
  61. // Send the datagram
  62. if (length > 4) writeDatagram(TMC4361A_COVER_HIGH_WR, bytes[7], bytes[6], bytes[5], bytes[4]);
  63. writeDatagram(TMC4361A_COVER_LOW_WR, bytes[3], bytes[2], bytes[1], bytes[0]);
  64. zos_delay(10);
  65. // Read the reply
  66. if (length > 4) {
  67. tmp = readInt(TMC4361A_COVER_DRV_HIGH_RD);
  68. bytes[4] = BYTE(tmp, 0);
  69. bytes[5] = BYTE(tmp, 1);
  70. bytes[6] = BYTE(tmp, 2);
  71. bytes[7] = BYTE(tmp, 3);
  72. }
  73. tmp = readInt(TMC4361A_COVER_DRV_LOW_RD);
  74. bytes[0] = BYTE(tmp, 0);
  75. bytes[1] = BYTE(tmp, 1);
  76. bytes[2] = BYTE(tmp, 2);
  77. bytes[3] = BYTE(tmp, 3);
  78. // Write the reply to the data array
  79. for (i = 0; i < length; i++) {
  80. data[length - i - 1] = bytes[i];
  81. }
  82. // Rewriting old values to prevent interrupting manual covering. Imitating unchanged values and state.
  83. writeInt(TMC4361A_COVER_HIGH_WR, old_high);
  84. shadowRegister[TMC4361A_COVER_LOW_WR] = old_low;
  85. }
  86. TMC4361A::TMC4361A(/* args */) {
  87. m_driver_ic_type = IC_TMC2130;
  88. m_lastCallPeriodicJobTick = 0;
  89. // m_reachtarget = false;
  90. }
  91. /**
  92. * @brief
  93. * TMC-APIеtmc4361A_reset/restoreʱTMC-APIеķʼоƬļĴ
  94. * Ĵʼ֮󣬻??
  95. * ǿУоƬIJּĴгʼ??
  96. * @param state
  97. */
  98. void TMC4361A::tmc4361AConfigCallback(ConfigState state) {}
  99. void TMC4361A::writeSubRegister(uint8_t address, uint32_t mask, uint32_t shift, uint32_t value) { //
  100. PRV_FIELD_WRITE(address, mask, shift, value);
  101. }
  102. void TMC4361A::setAcceleration(float accelerationpps2) {
  103. /**
  104. * @brief
  105. * TMC4361A_AMAX:ģʽʹõƵģʽ
  106. *
  107. * Frequency mode: [pulses per sec2]
  108. * 22 digits and 2 decimal places: 250 mpps^2 ?? AMAX ?? 4 Mpps^2
  109. * Direct mode: [?v per clk cycle]
  110. * a[?v per clk_cycle]= AMAX / 2^37
  111. * AMAX [pps2] = AMAX / 237 ?? fCLK^2
  112. */
  113. accelerationpps2 = to_motor_acc(accelerationpps2);
  114. int32_t acc = (int32_t)accelerationpps2;
  115. writeInt(TMC4361A_AMAX, acc << 2);
  116. }
  117. void TMC4361A::setDeceleration(float accelerationpps2) {
  118. /**
  119. * @brief
  120. * TMC4361A_DMAX:ģʽʹõƵģʽ
  121. *
  122. * Frequency mode: [pulses per sec2]
  123. * 22 digits and 2 decimal places: 250 mpps^2 ?? AMAX ?? 4 Mpps^2
  124. * Direct mode: [?v per clk cycle]
  125. * a[?v per clk_cycle]= AMAX / 2^37
  126. * AMAX [pps2] = AMAX / 237 ?? fCLK^2
  127. */
  128. accelerationpps2 = to_motor_acc(accelerationpps2);
  129. int32_t acc = (int32_t)accelerationpps2;
  130. writeInt(TMC4361A_DMAX, acc << 2);
  131. }
  132. #define INIT_GPIO(m_pin, pin, ...) \
  133. if (pin != PinNull) { \
  134. m_pin = new ZGPIO(); \
  135. ZASSERT(m_pin != nullptr); \
  136. m_pin->initAsOutput(pin, __VA_ARGS__); \
  137. } else { \
  138. m_pin = nullptr; \
  139. }
  140. void TMC4361A::initialize(cfg_t *cfg) {
  141. m_spi = cfg->spi;
  142. INIT_GPIO(m_csgpio, cfg->csgpio, ZGPIO::kMode_nopull, false, true);
  143. INIT_GPIO(m_resetPin, cfg->resetPin, ZGPIO::kMode_nopull, false, true);
  144. INIT_GPIO(m_fREEZEPin, cfg->fREEZEPin, ZGPIO::kMode_nopull, false, true);
  145. INIT_GPIO(m_ennPin, cfg->ennPin, ZGPIO::kMode_nopull, false, true);
  146. INIT_GPIO(m_driverIC_resetPin, cfg->driverIC_resetPin, ZGPIO::kMode_nopull, false, true);
  147. INIT_GPIO(m_driverIC_ennPin, cfg->driverIC_ennPin, ZGPIO::kMode_nopull, false, true);
  148. m_driver_ic_type = IC_TMC2160;
  149. m_registerAccessTable = &tmc4361A_defaultRegisterAccess[0];
  150. m_defaultRegisterResetState = &tmc4361A_defaultRegisterResetState[0];
  151. memset(shadowRegister, 0, sizeof(shadowRegister));
  152. SET_PIN(m_resetPin, true);
  153. SET_PIN(m_fREEZEPin, true);
  154. SET_PIN(m_ennPin, true);
  155. reset();
  156. driverIC_reset();
  157. setAcceleration(500000);
  158. setDeceleration(500000);
  159. enableIC(true);
  160. zchip_clock_early_delayus(300 * 1000);
  161. zchip_clock_early_delayus(300 * 1000);
  162. driverIC_setIHOLD_IRUN(1, 3, 0);
  163. }
  164. void TMC4361A::setScale(int32_t scale) { m_scale = scale; }
  165. uint8_t TMC4361A::reset() {
  166. // Pulse the low-active hardware reset pin
  167. stop();
  168. SET_PIN(m_resetPin, false);
  169. zchip_clock_early_delayus(1000);
  170. SET_PIN(m_resetPin, true);
  171. /**
  172. * @brief оƬĴ??
  173. *
  174. */
  175. for (uint32_t add = 0; add < TMC4361A_REGISTER_COUNT; add++) {
  176. if (!TMC_IS_RESETTABLE(m_registerAccessTable[add])) {
  177. continue;
  178. }
  179. writeInt(add, m_defaultRegisterResetState[add]);
  180. }
  181. uint8_t driver, dataLength;
  182. uint32_t value;
  183. // Setup SPI
  184. switch (m_driver_ic_type) {
  185. case IC_TMC2130:
  186. case IC_TMC2160:
  187. driver = 0x0C;
  188. dataLength = 0;
  189. break;
  190. case IC_TMC2660:
  191. driver = 0x0B;
  192. dataLength = 0;
  193. break;
  194. default:
  195. driver = 0x0F;
  196. dataLength = 40;
  197. break;
  198. }
  199. value = 0x44400040 | (dataLength << 13) | (driver << 0);
  200. writeInt(TMC4361A_SPIOUT_CONF, value);
  201. writeInt(TMC4361A_CURRENT_CONF, 0x00000003);
  202. writeInt(TMC4361A_SCALE_VALUES, 0x00000000);
  203. return 1;
  204. }
  205. uint8_t TMC4361A::restore() { return 1; }
  206. int32_t TMC4361A::getXACTUAL() { return to_user_pos(readInt(TMC4361A_XACTUAL)); }
  207. void TMC4361A::setXACTUAL(int32_t value) { writeInt(TMC4361A_XACTUAL, to_motor_pos(value)); }
  208. int32_t TMC4361A::getVACTUAL() { return to_user_pos(readInt(TMC4361A_VACTUAL)); }
  209. int32_t TMC4361A::getXTARGET() { return to_user_pos(readInt(TMC4361A_X_TARGET)); }
  210. int32_t TMC4361A::getENC_POS() { return to_user_pos(readInt(TMC4361A_ENC_POS)); }
  211. void TMC4361A::setENC_POS(int32_t value) { writeInt(TMC4361A_ENC_POS, to_motor_pos(value)); }
  212. int32_t TMC4361A::getENC_POS_DEV() { return to_user_pos(readInt(TMC4361A_ENC_POS_DEV_RD)); }
  213. void TMC4361A::enableIC(bool enable) {
  214. SET_PIN(m_ennPin, !enable);
  215. SET_PIN(m_driverIC_ennPin, !enable);
  216. }
  217. int32_t tmc4361A_discardVelocityDecimals(int32_t value) {
  218. if (abs(value) > 8000000) {
  219. value = (value < 0) ? -8000000 : 8000000;
  220. }
  221. return value << 8;
  222. }
  223. void TMC4361A::rotate(int32_t velocity) {
  224. // velocity *= m_scale;
  225. velocity = to_motor_vel(velocity);
  226. m_motor_mode = kvelmode;
  227. PRV_FIELD_WRITE(TMC4361A_RAMPMODE, TMC4361A_OPERATION_MODE_MASK, TMC4361A_OPERATION_MODE_SHIFT, 0);
  228. writeInt(TMC4361A_VMAX, tmc4361A_discardVelocityDecimals(velocity));
  229. }
  230. void TMC4361A::stop() { rotate(0); }
  231. void TMC4361A::moveTo(int32_t position, uint32_t velocityMax) {
  232. // position *= m_scale;
  233. // velocityMax *= m_scale;
  234. position = to_motor_pos(position);
  235. velocityMax = to_motor_vel(velocityMax);
  236. m_motor_mode = kposmode;
  237. PRV_FIELD_WRITE(TMC4361A_RAMPMODE, TMC4361A_OPERATION_MODE_MASK, TMC4361A_OPERATION_MODE_SHIFT, 1);
  238. writeInt(TMC4361A_VMAX, tmc4361A_discardVelocityDecimals(velocityMax));
  239. writeInt(TMC4361A_X_TARGET, position);
  240. }
  241. void TMC4361A::moveBy(int32_t relativePosition, uint32_t velocityMax) {
  242. relativePosition += readInt(TMC4361A_XACTUAL);
  243. moveTo(relativePosition, velocityMax);
  244. }
  245. int32_t TMC4361A::readICVersion() {
  246. int32_t value = readInt(TMC4361A_VERSION_NO_RD);
  247. return (value & TMC4361A_VERSION_NO_MASK) >> TMC4361A_VERSION_NO_SHIFT;
  248. }
  249. int32_t TMC4361A::readSubICVersion() { return driverIC_readICVersion(); }
  250. /*******************************************************************************
  251. * 2160 function end *
  252. *******************************************************************************/
  253. uint32_t TMC4361A::readEVENTS() {
  254. uint32_t value = readInt(TMC4361A_EVENTS);
  255. return value;
  256. }
  257. uint32_t TMC4361A::haspassedms(uint32_t now, uint32_t last) {
  258. if (now >= last) {
  259. return now - last;
  260. } else {
  261. return 0xFFFFFFFF - last + now;
  262. }
  263. }
  264. bool TMC4361A::isReachTarget() {
  265. uint32_t value = readInt(TMC4361A_STATUS);
  266. // printf("TMC4361A_STATUS:%08x\n", value);
  267. if (m_motor_mode == kposmode) {
  268. return (value & TMC4361A_TARGET_REACHED_F_MASK) > 0;
  269. } else {
  270. return (value & TMC4361A_VEL_REACHED_F_MASK) && (readInt(TMC4361A_VMAX) == 0);
  271. }
  272. }
  273. /*******************************************************************************
  274. * DRIVER_IC *
  275. *******************************************************************************/
  276. #define DRIVER_ID_FIELD_READ(address, mask, shift) FIELD_GET(driverIC_readInt(address), mask, shift)
  277. #define DRIVER_ID_FIELD_WRITE(address, mask, shift, value) (driverIC_writeInt(address, FIELD_SET(driverIC_readInt(address), mask, shift, value)))
  278. void TMC4361A::driverIC_reset() {
  279. SET_PIN(m_driverIC_resetPin, false);
  280. zchip_clock_early_delayus(1000);
  281. SET_PIN(m_driverIC_resetPin, true);
  282. // Reset the dirty bits
  283. int index = 0;
  284. while (true) {
  285. while ((index < TMC2160_REGISTER_COUNT) && !TMC_IS_RESTORABLE(tmc2160_defaultRegisterAccess[index])) {
  286. index++;
  287. }
  288. if (index >= TMC2160_REGISTER_COUNT) {
  289. break;
  290. }
  291. // printf("Resetting register %d\n", index);
  292. driverIC_writeInt(index, tmc2160_defaultRegisterResetState[index]);
  293. index++;
  294. }
  295. driverIC_writeInt(TMC2160_PWMCONF, 0xC40C001E);
  296. driverIC_writeInt(TMC2160_DRV_CONF, 0x00080400);
  297. }
  298. void TMC4361A::driverIC_enableIC(bool enable) { SET_PIN(m_driverIC_ennPin, !enable); }
  299. void TMC4361A::driverIC_writeDatagram(uint8_t address, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4) {
  300. uint8_t data[5] = {static_cast<uint8_t>(address | static_cast<uint8_t>(TMC2160_WRITE_BIT)), x1, x2, x3, x4};
  301. readWriteCover(&data[0], 5);
  302. }
  303. void TMC4361A::driverIC_writeInt(uint8_t address, int32_t value) { driverIC_writeDatagram(address, BYTE(value, 3), BYTE(value, 2), BYTE(value, 1), BYTE(value, 0)); }
  304. int32_t TMC4361A::driverIC_readInt(uint8_t address) {
  305. address = TMC_ADDRESS(address);
  306. // register not readable -> shadow register copy
  307. if (!TMC_IS_READABLE(tmc2160_defaultRegisterAccess[address])) return 0;
  308. uint8_t data[5];
  309. data[0] = address;
  310. readWriteCover(&data[0], 5);
  311. data[0] = address;
  312. readWriteCover(&data[0], 5);
  313. return ((uint32_t)data[1] << 24) | ((uint32_t)data[2] << 16) | (data[3] << 8) | data[4];
  314. }
  315. void TMC4361A::driverIC_setMotorShaft(bool reverse) {
  316. //
  317. int32_t val = reverse ? 1 : 0;
  318. DRIVER_ID_FIELD_WRITE(TMC2160_GCONF, TMC2160_SHAFT_MASK, TMC2160_SHAFT_SHIFT, val);
  319. }
  320. uint32_t TMC4361A::driverIC_readICVersion() {
  321. int32_t value = driverIC_readInt(TMC2160_IOIN___OUTPUT);
  322. return (value & TMC2160_VERSION_MASK) >> TMC2160_VERSION_SHIFT;
  323. }
  324. void TMC4361A::driverIC_setIHOLD_IRUN(uint8_t ihold, uint8_t irun, uint16_t iholddelay) { driverIC_writeInt(TMC2160_IHOLD_IRUN, (iholddelay << TMC2160_IHOLDDELAY_SHIFT) | (irun << TMC2160_IRUN_SHIFT) | (ihold << TMC2160_IHOLD_SHIFT)); }
  325. // Left Virtual Limit Switch XACTUAL �� VIRT_STOP_LEFT ʱ����
  326. void TMC4361A::setLeftVirtualLimitSwitch(bool enable, int32_t position) {
  327. PRV_FIELD_WRITE(TMC4361A_REFERENCE_CONF, TMC4361A_VIRTUAL_LEFT_LIMIT_EN_MASK, TMC4361A_VIRTUAL_LEFT_LIMIT_EN_SHIFT, enable ? 1 : 0);
  328. writeInt(TMC4361A_VIRT_STOP_LEFT, position);
  329. }
  330. // Right Virtual Limit Switch XACTUAL �� VIRT_STOP_RIGHT ʱ����
  331. void TMC4361A::setRightVirtualLimitSwitch(bool enable, int32_t position) {
  332. PRV_FIELD_WRITE(TMC4361A_REFERENCE_CONF, TMC4361A_VIRTUAL_RIGHT_LIMIT_EN_MASK, TMC4361A_VIRTUAL_RIGHT_LIMIT_EN_SHIFT, enable ? 1 : 0);
  333. writeInt(TMC4361A_VIRT_STOP_RIGHT, position);
  334. }
  335. int32_t TMC4361A::to_motor_acc(int32_t acc) { //
  336. int32_t val = acc / 60.0 * 51200;
  337. return val;
  338. }
  339. int32_t TMC4361A::to_motor_vel(int32_t vel) { //
  340. int32_t val = vel / 60.0 * 51200;
  341. return val;
  342. } // rpm
  343. int32_t TMC4361A::to_motor_pos(int32_t pos) { //
  344. int32_t val = pos * 1.0 / m_scale * 51200.0;
  345. return val;
  346. } //
  347. int32_t TMC4361A::to_user_pos(int32_t pos) { //
  348. int32_t val = pos / 51200.0 * m_scale;
  349. return 0;
  350. } //
  351. int32_t TMC4361A::to_user_vel(int32_t vel) { //
  352. int32_t val = vel * 60.0 / 51200.0;
  353. return 0;
  354. }
  355. #endif
  356. #endif
  357. #endif