You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

517 lines
17 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
  1. #include "zcanreceiver_master.hpp"
  2. #include "project_configs.h"
  3. #include "sdk\components\zprotocols\errorcode\errorcode.hpp"
  4. #ifdef HAL_CAN_MODULE_ENABLED
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. using namespace iflytop;
  9. using namespace zcr;
  10. #define TAG "ZCanCommnaderMaster"
  11. #define OVER_TIME_MS 5
  12. #define MASK_32BIT(off) (0x01 << (off))
  13. ZCanCommnaderMaster::CFG *ZCanCommnaderMaster::createCFG() {
  14. CFG *cfg = new CFG();
  15. ZASSERT(cfg != NULL);
  16. cfg->deviceId = 1;
  17. #ifdef STM32F103xB
  18. cfg->canHandle = &hcan;
  19. #else
  20. cfg->canHandle = &hcan1;
  21. #endif
  22. cfg->canFilterIndex0 = 0;
  23. cfg->maxFilterNum = 7;
  24. cfg->rxfifoNum = CAN_RX_FIFO0;
  25. return cfg;
  26. }
  27. void ZCanCommnaderMaster::init(CFG *cfg) {
  28. HAL_StatusTypeDef hal_status;
  29. m_config = cfg;
  30. m_on_packet_map_lock.init();
  31. txlock.init();
  32. /**
  33. * @brief ʼCAN
  34. */
  35. /**
  36. * @brief ʼϢbuf
  37. */
  38. m_canPacketRxBuffer[0].dataIsReady = false;
  39. m_canPacketRxBuffer[0].id = 1; // ֻ����������������Ϣ
  40. m_canPacketRxBuffer[0].m_canPacketNum = 0;
  41. /**
  42. * @brief ʼ
  43. */
  44. hal_status = initializeFilter();
  45. if (hal_status != HAL_OK) {
  46. ZLOGE(TAG, "start can initializeFilter fail\r\n");
  47. return;
  48. }
  49. /**
  50. * @brief CAN
  51. */
  52. hal_status = HAL_CAN_Start(m_config->canHandle); // ����CAN
  53. if (hal_status != HAL_OK) {
  54. ZLOGE(TAG, "start can fail\r\n");
  55. return;
  56. }
  57. /**
  58. * @brief ص
  59. */
  60. ZCanIRQDispatcher::instance().regListener(this);
  61. HAL_StatusTypeDef status = activateRxIT();
  62. if (status != HAL_OK) {
  63. ZLOGE(TAG, "activateRxIT fail\r\n");
  64. return;
  65. }
  66. m_loopThread.init("ZCanCommnaderMaster", 1024, osPriorityAboveNormal);
  67. m_loopThread.start([this]() {
  68. while (true) {
  69. loop();
  70. osDelay(1);
  71. }
  72. });
  73. }
  74. HAL_StatusTypeDef ZCanCommnaderMaster::initializeFilter() {
  75. /**
  76. * @brief ID֡ʽ
  77. * [ 27:0 ]
  78. * [ STDID ] [ EXTID ]
  79. * [11 :9] [8:6] [5:0] [17:16] [15:8] [7:0]
  80. * ȼ ֡ ĿID ԴID
  81. */
  82. HAL_StatusTypeDef HAL_Status;
  83. CAN_FilterTypeDef sFilterConfig;
  84. uint32_t filterId;
  85. uint32_t mask;
  86. memset(&sFilterConfig, 0, sizeof(sFilterConfig));
  87. sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; // ��ΪMASKģʽ
  88. sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; // CAN_FILTERSCALE_16BIT
  89. sFilterConfig.FilterFIFOAssignment = m_config->rxfifoNum; // ������������rxfifoNum
  90. sFilterConfig.FilterActivation = ENABLE; // ����������
  91. sFilterConfig.SlaveStartFilterBank = m_config->maxFilterNum; // slave filter start index
  92. /*******************************************************************************
  93. * Ϣ *
  94. *******************************************************************************/
  95. filterId = (0); //
  96. mask = (0); //
  97. sFilterConfig.FilterBank = m_config->canFilterIndex0; //
  98. sFilterConfig.FilterMaskIdLow = mask & 0xffff; //
  99. sFilterConfig.FilterMaskIdHigh = (mask & 0xffff0000) >> 16; //
  100. sFilterConfig.FilterIdLow = filterId & 0xffff; //
  101. sFilterConfig.FilterIdHigh = (filterId & 0xffff0000) >> 16; //
  102. HAL_Status = HAL_CAN_ConfigFilter(m_config->canHandle, &sFilterConfig);
  103. if (HAL_Status != HAL_OK) {
  104. ZLOGE(TAG, "HAL_CAN_ConfigFilter filter0 fail");
  105. return HAL_Status;
  106. }
  107. ZLOGI(TAG, "HAL_CAN_ConfigFilter filterID1 %08x", filterId >> 3);
  108. return HAL_Status;
  109. }
  110. int32_t ZCanCommnaderMaster::sendCmdWithStatusCb(uint8_t *packet, size_t len, uint16_t &packetindex, int overtime_ms, action_cb_status_t status_cb) {
  111. return sendPacketBlock(packet, len, packetindex, NULL, 0, overtime_ms, [status_cb](CanPacketRxBuffer *rxreport) {
  112. if (status_cb) status_cb(rxreport->get_data_as<kcmd_xy_robot_ctrl_move_to_report_t>()->exec_status);
  113. });
  114. }
  115. int32_t ZCanCommnaderMaster::sendCmd(uint8_t *packet, size_t len, uint8_t *rxbuf, size_t rxbuflen, int overtime_ms) {
  116. uint16_t packetindex = 0;
  117. return sendPacketBlock(packet, len, packetindex, rxbuf, rxbuflen, overtime_ms, NULL);
  118. }
  119. int32_t ZCanCommnaderMaster::sendCmdNoAck(uint8_t *packet, size_t len, int overtime_ms) {
  120. uint16_t packetindex = 0;
  121. return sendPacketBlock(packet, len, packetindex, NULL, 0, overtime_ms, NULL);
  122. }
  123. int32_t ZCanCommnaderMaster::sendPacketBlock(uint8_t *packet,
  124. size_t len, //
  125. uint16_t &packetindex, //
  126. uint8_t *rxbuf, //
  127. size_t rxbuflen, //
  128. int overtime_ms, //
  129. zcan_commnader_master_onpacket_t onReport) {
  130. Cmdheader_t *cmdheader = (Cmdheader_t *)packet;
  131. if (packetindex != 0) {
  132. unregListener(packetindex);
  133. packetindex = 0;
  134. }
  135. cmdheader->packetindex = generateFreeIndex();
  136. /**
  137. * @brief ע
  138. */
  139. bool rxdataIsReady = false;
  140. int32_t errocode = 0;
  141. regListener(
  142. cmdheader->packetindex,
  143. [this, &rxdataIsReady, &rxbuf, &rxbuflen, &errocode](CanPacketRxBuffer *report) {
  144. if (report->get_cmdheader()->packetType == kpt_error_ack) {
  145. auto *error_ack = report->get_data_as<zcan_cmder_error_ack_t>();
  146. errocode = error_ack->errorcode;
  147. } else {
  148. if (rxbuf) {
  149. // ZLOGI(TAG, "rxbuf:%d", report->get_datalen());
  150. safe_memcpy(rxbuf, rxbuflen, report->get_data(), report->get_datalen());
  151. }
  152. }
  153. rxdataIsReady = true;
  154. },
  155. onReport, nullptr);
  156. /**
  157. * @brief Ϣ
  158. */
  159. sendPacket(packet, len);
  160. /**
  161. * @brief ȴִ
  162. */
  163. uint32_t enterticket = zos_get_tick();
  164. while (!rxdataIsReady) {
  165. if (zos_haspassedms(enterticket) > (uint32_t)overtime_ms) {
  166. ZLOGE(TAG, "sendPacketBlock timeout");
  167. unregListener(cmdheader->packetindex);
  168. return err::kce_overtime;
  169. }
  170. osDelay(1);
  171. }
  172. if (errocode != 0) {
  173. unregListener(cmdheader->packetindex);
  174. return errocode;
  175. }
  176. packetindex = cmdheader->packetindex;
  177. if (!onReport) {
  178. unregListener(cmdheader->packetindex);
  179. } else {
  180. unregListenerAckCB(cmdheader->packetindex);
  181. }
  182. return 0;
  183. }
  184. void ZCanCommnaderMaster::regListener(uint16_t index, //
  185. zcan_commnader_master_onpacket_t onack, //
  186. zcan_commnader_master_onpacket_t on_cmd_exec_status_report, //
  187. zcan_commnader_master_onpacket_t on_report) {
  188. zlock_guard l(m_on_packet_map_lock);
  189. if (m_on_packet_map.size() > 10000) {
  190. ZLOGW(TAG, "m_on_packet_map.size() = %d>10000", m_on_packet_map.size());
  191. }
  192. ZCanCommnaderMasterListener listener;
  193. listener.on_ack = onack;
  194. listener.on_cmd_exec_status_report = on_cmd_exec_status_report;
  195. listener.on_report = on_report;
  196. m_on_packet_map[index] = listener;
  197. }
  198. void ZCanCommnaderMaster::unregListener(uint16_t index) {
  199. zlock_guard l(m_on_packet_map_lock);
  200. auto it = m_on_packet_map.find(index);
  201. if (it != m_on_packet_map.end()) {
  202. m_on_packet_map.erase(it);
  203. }
  204. }
  205. void ZCanCommnaderMaster::unregListenerAckCB(uint16_t index) {
  206. zlock_guard l(m_on_packet_map_lock);
  207. auto it = m_on_packet_map.find(index);
  208. if (it != m_on_packet_map.end()) {
  209. it->second.on_ack = nullptr;
  210. }
  211. }
  212. int ZCanCommnaderMaster::getListenerNum() {
  213. zlock_guard l(m_on_packet_map_lock);
  214. return m_on_packet_map.size();
  215. }
  216. bool ZCanCommnaderMaster::isListenerReg(uint16_t index) {
  217. zlock_guard l(m_on_packet_map_lock);
  218. auto it = m_on_packet_map.find(index);
  219. if (it != m_on_packet_map.end()) {
  220. return true;
  221. }
  222. return false;
  223. }
  224. void ZCanCommnaderMaster::callListener(CanPacketRxBuffer *report) {
  225. uint16_t index = report->get_cmdheader()->packetindex;
  226. {
  227. zlock_guard l(m_on_packet_map_lock);
  228. auto it = m_on_packet_map.find(index);
  229. if (it != m_on_packet_map.end()) {
  230. if (report->get_cmdheader()->packetType == kpt_ack || report->get_cmdheader()->packetType == kpt_error_ack) {
  231. if (it->second.on_ack) it->second.on_ack(report);
  232. } else if (report->get_cmdheader()->packetType == kpt_cmd_exec_status_report) {
  233. if (it->second.on_cmd_exec_status_report) it->second.on_cmd_exec_status_report(report);
  234. } else if (report->get_cmdheader()->packetType == kpt_report) {
  235. if (it->second.on_report) it->second.on_report(report);
  236. }
  237. }
  238. }
  239. }
  240. uint16_t ZCanCommnaderMaster::generateFreeIndex() {
  241. m_index_off++;
  242. uint16_t count = 0;
  243. if (m_index_off == 0) m_index_off = 1;
  244. while (isListenerReg(m_index_off)) {
  245. m_index_off++;
  246. if (m_index_off == 0) m_index_off = 1;
  247. count++;
  248. if (count == 0) {
  249. ZLOGE(TAG, "generateFreeIndex fail");
  250. NVIC_SystemReset();
  251. }
  252. }
  253. return m_index_off;
  254. }
  255. void ZCanCommnaderMaster::sendPacket(uint8_t *packet, size_t len) {
  256. zlock_guard txlock_guard(txlock);
  257. /**
  258. * @brief
  259. */
  260. int npacket = len / 8 + (len % 8 == 0 ? 0 : 1);
  261. if (npacket > 255) {
  262. ZLOGE(TAG, "sendPacket fail, len:%d", len);
  263. return;
  264. }
  265. int finalpacketlen = len % 8 == 0 ? 8 : len % 8;
  266. for (uint8_t i = 0; i < npacket; i++) {
  267. bool suc = false;
  268. if (i == npacket - 1) {
  269. suc = sendPacketSub(npacket, i, packet + i * 8, finalpacketlen, OVER_TIME_MS);
  270. } else {
  271. suc = sendPacketSub(npacket, i, packet + i * 8, 8, OVER_TIME_MS);
  272. }
  273. if (!suc) {
  274. ZLOGE(TAG, "sendPacket fail, packet(%d:%d)", npacket, i);
  275. return;
  276. }
  277. }
  278. }
  279. bool ZCanCommnaderMaster::sendPacketSub(int npacket, int packetIndex, uint8_t *packet, size_t len, int overtimems) {
  280. // ZLOGI(TAG, "sendPacketSub(%d:%d)", npacket, packetIndex);
  281. CAN_TxHeaderTypeDef pHeader;
  282. uint8_t aData[8] /*8byte table*/;
  283. uint32_t txMailBox = 0;
  284. uint32_t enterticket = zos_get_tick();
  285. memset(&pHeader, 0, sizeof(pHeader));
  286. memset(aData, 0, sizeof(aData));
  287. pHeader.StdId = 0x00;
  288. pHeader.ExtId = (m_config->deviceId << 16) | (npacket << 8) | packetIndex;
  289. pHeader.IDE = CAN_ID_EXT;
  290. pHeader.RTR = CAN_RTR_DATA;
  291. pHeader.DLC = len;
  292. pHeader.TransmitGlobalTime = DISABLE;
  293. memcpy(aData, packet, len);
  294. m_lastTransmitStatus = HAL_CAN_AddTxMessage(m_config->canHandle, &pHeader, aData, &txMailBox);
  295. if (m_lastTransmitStatus != HAL_OK) {
  296. ZLOGE(TAG, "HAL_CAN_AddTxMessage fail");
  297. return false;
  298. }
  299. while (HAL_CAN_IsTxMessagePending(m_config->canHandle, txMailBox)) {
  300. if (zos_haspassedms(enterticket) > (uint32_t)overtimems) {
  301. m_lastTransmitStatus = HAL_TIMEOUT;
  302. HAL_CAN_AbortTxRequest(m_config->canHandle, txMailBox);
  303. return false;
  304. }
  305. // m_os->sleepMS(1);
  306. }
  307. if (txPacketInterval_ms > 0) {
  308. osDelay(txPacketInterval_ms);
  309. }
  310. return true;
  311. }
  312. bool ZCanCommnaderMaster::getRxMessage(CAN_RxHeaderTypeDef *pHeader, uint8_t aData[] /*8byte table*/) {
  313. /**
  314. * @brief ȡǰFIFOл˶֡
  315. */
  316. uint32_t level = HAL_CAN_GetRxFifoFillLevel(m_config->canHandle, m_config->rxfifoNum);
  317. if (level == 0) {
  318. return false;
  319. }
  320. HAL_StatusTypeDef HAL_RetVal;
  321. HAL_RetVal = HAL_CAN_GetRxMessage(m_config->canHandle, m_config->rxfifoNum, pHeader, aData);
  322. if (HAL_OK == HAL_RetVal) {
  323. // �������յ���can��������
  324. return true;
  325. }
  326. return false;
  327. }
  328. void ZCanCommnaderMaster::initCanPacketRxBuffer(CanPacketRxBuffer *buf, uint16_t id) {
  329. memset(buf, 0, sizeof(CanPacketRxBuffer));
  330. buf->id = id;
  331. }
  332. CanPacketRxBuffer *ZCanCommnaderMaster::allocCanPacketRxBufferInIRQ(uint16_t id) {
  333. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  334. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  335. // ˵����ǰid�Ļ����Ѿ����ڣ������ڶ������������ռ���
  336. if (!m_canPacketRxBuffer[i].dataIsReady) {
  337. initCanPacketRxBuffer(&m_canPacketRxBuffer[i], id);
  338. m_canPacketRxBuffer[i].isUsed = true;
  339. return &m_canPacketRxBuffer[i];
  340. }
  341. }
  342. }
  343. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  344. if (!m_canPacketRxBuffer[i].isUsed) {
  345. initCanPacketRxBuffer(&m_canPacketRxBuffer[i], id);
  346. m_canPacketRxBuffer[i].isUsed = true;
  347. return &m_canPacketRxBuffer[i];
  348. }
  349. }
  350. return nullptr;
  351. }
  352. CanPacketRxBuffer *ZCanCommnaderMaster::findCanPacketRxBufferInIRQ(uint16_t id) {
  353. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  354. if (!m_canPacketRxBuffer[i].dataIsReady && m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  355. return &m_canPacketRxBuffer[i];
  356. }
  357. }
  358. return nullptr;
  359. }
  360. void ZCanCommnaderMaster::freeCanPacketRxBuffer(uint16_t id) {
  361. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  362. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  363. m_canPacketRxBuffer[i].isUsed = false;
  364. return;
  365. }
  366. }
  367. }
  368. void ZCanCommnaderMaster::STM32_HAL_onCAN_RxFifo0MsgPending(CAN_HandleTypeDef *canHandle) {
  369. /**
  370. * @brief ж
  371. */
  372. // ZLOG_INFO("%s\n", __FUNCTION__);
  373. // printf("------------------%s\n", __FUNCTION__);
  374. if (canHandle != m_config->canHandle) {
  375. return;
  376. }
  377. /**
  378. * @brief canյϢ
  379. */
  380. CAN_RxHeaderTypeDef pHeader;
  381. uint8_t aData[8] /*8byte table*/;
  382. while (getRxMessage(&pHeader, aData)) {
  383. /**
  384. * @brief Ϣʽ
  385. *
  386. * [2] [3bit] [8bit] [8bit] [8bit]
  387. * , from frameNum frameId
  388. */
  389. uint8_t from = (pHeader.ExtId >> 16 & 0xFF);
  390. uint8_t nframe = (pHeader.ExtId & 0xFF00) >> 8;
  391. uint8_t frameId = (pHeader.ExtId & 0x00FF);
  392. CanPacketRxBuffer *rxbuf = nullptr;
  393. if (frameId == 0) {
  394. rxbuf = allocCanPacketRxBufferInIRQ(from);
  395. rxbuf->m_npacket = nframe;
  396. } else {
  397. rxbuf = findCanPacketRxBufferInIRQ(from);
  398. }
  399. if (!rxbuf) return;
  400. if (rxbuf->m_canPacketNum < ZARRAY_SIZE(rxbuf->m_canPacket)) {
  401. rxbuf->m_canPacket[rxbuf->m_canPacketNum].pHeader = pHeader;
  402. memcpy(rxbuf->m_canPacket[rxbuf->m_canPacketNum].aData, aData, 8);
  403. rxbuf->m_canPacketNum++;
  404. }
  405. /**
  406. * @brief
  407. */
  408. if (nframe == frameId + 1) {
  409. rxbuf->dataIsReady = true;
  410. if ((rxbuf->m_canPacketNum) != rxbuf->m_npacket) rxbuf->lostpacket = true;
  411. }
  412. }
  413. // deactivateRxIT();
  414. }
  415. void ZCanCommnaderMaster::STM32_HAL_onCAN_Error(CAN_HandleTypeDef *canHandle) {
  416. if (canHandle != m_config->canHandle) {
  417. return;
  418. }
  419. ZLOGE(TAG, "onCAN_Error\r\n");
  420. }
  421. void ZCanCommnaderMaster::processReadyPacket(CanPacketRxBuffer *rxbuf) {
  422. int dataoff = 0;
  423. for (size_t i = 0; i < rxbuf->m_canPacketNum; i++) {
  424. memcpy(rxbuf->rxdata + dataoff, rxbuf->m_canPacket[i].aData, rxbuf->m_canPacket[i].pHeader.DLC);
  425. dataoff += rxbuf->m_canPacket[i].pHeader.DLC;
  426. rxbuf->rxdataSize = dataoff;
  427. }
  428. if (rxbuf->lostpacket) {
  429. ZLOGE(TAG, "lostpacket %d %d", rxbuf->m_canPacketNum, rxbuf->m_npacket);
  430. } else {
  431. callListener(rxbuf);
  432. }
  433. rxbuf->dataIsReady = false;
  434. }
  435. void ZCanCommnaderMaster::loop() {
  436. /**
  437. * @brief MainLoop
  438. */
  439. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  440. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].dataIsReady) {
  441. processReadyPacket(&m_canPacketRxBuffer[i]);
  442. }
  443. }
  444. }
  445. HAL_StatusTypeDef ZCanCommnaderMaster::activateRxIT() {
  446. HAL_StatusTypeDef hal_status = HAL_ERROR;
  447. if (m_config->rxfifoNum == CAN_RX_FIFO0) {
  448. hal_status = HAL_CAN_ActivateNotification(m_config->canHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  449. } else if (m_config->rxfifoNum == CAN_RX_FIFO1) {
  450. hal_status = HAL_CAN_ActivateNotification(m_config->canHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  451. } else {
  452. ZLOGE(TAG, "start can HAL_CAN_ActivateNotification CAN_IT_RX_FIFO0_MSG_PENDING fail\r\n");
  453. return hal_status;
  454. }
  455. return hal_status;
  456. }
  457. HAL_StatusTypeDef ZCanCommnaderMaster::deactivateRxIT() {
  458. HAL_StatusTypeDef hal_status = HAL_ERROR;
  459. if (m_config->rxfifoNum == CAN_RX_FIFO0) {
  460. hal_status = HAL_CAN_DeactivateNotification(m_config->canHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  461. } else if (m_config->rxfifoNum == CAN_RX_FIFO1) {
  462. hal_status = HAL_CAN_DeactivateNotification(m_config->canHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  463. } else {
  464. ZLOGE(TAG, "start can HAL_CAN_ActivateNotification CAN_IT_RX_FIFO0_MSG_PENDING fail\r\n");
  465. return hal_status;
  466. }
  467. return hal_status;
  468. }
  469. size_t ZCanCommnaderMaster::safe_memcpy(void *dst, size_t dst_max_size, void *src, size_t src_len) { //
  470. size_t cpysize = dst_max_size < src_len ? dst_max_size : src_len;
  471. memcpy(dst, src, cpysize);
  472. return cpysize;
  473. }
  474. #endif