You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

368 lines
12 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
  1. #if 1
  2. #include "ztmc4361A.hpp"
  3. #ifdef HAL_SPI_MODULE_ENABLED
  4. #include <stdarg.h>
  5. #include "../basic/basic.hpp"
  6. #include "./TMC4361A/TMC4361A.h"
  7. #include "sdk/os/zos.hpp"
  8. using namespace iflytop;
  9. #define PRV_FIELD_WRITE(address, mask, shift, value) (writeInt(address, FIELD_SET(readInt(address), mask, shift, value)))
  10. #define PRV_FIELD_READ(address, mask, shift) FIELD_GET(readInt(address), mask, shift)
  11. #define SET_PIN(pin, val) \
  12. if (pin) { \
  13. pin->setState(val); \
  14. }
  15. #if 1
  16. void TMC4361A::readWriteArray(uint8_t *data, size_t length) {
  17. m_csgpio->setState(false);
  18. // zchip_clock_early_delayus(10);
  19. zchip_clock_early_delayus(10);
  20. HAL_SPI_TransmitReceive(m_spi, data, data, length, 1000);
  21. m_csgpio->setState(true);
  22. }
  23. void TMC4361A::writeInt(uint8_t address, int32_t value) { writeDatagram(address, BYTE(value, 3), BYTE(value, 2), BYTE(value, 1), BYTE(value, 0)); }
  24. int32_t TMC4361A::readInt(uint8_t address) {
  25. CriticalContext cc;
  26. int value;
  27. uint8_t data[5];
  28. address = TMC_ADDRESS(address);
  29. if (!TMC_IS_READABLE(m_registerAccessTable[address])) return m_defaultRegisterResetState[address];
  30. data[0] = address;
  31. readWriteArray(&data[0], 5);
  32. data[0] = address;
  33. readWriteArray(&data[0], 5);
  34. m_status = data[0];
  35. value = ((uint32_t)data[1] << 24) | ((uint32_t)data[2] << 16) | (data[3] << 8) | data[4];
  36. return value;
  37. }
  38. void TMC4361A::writeDatagram(uint8_t address, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4) {
  39. CriticalContext cc;
  40. int value;
  41. uint8_t data[5] = {static_cast<uint8_t>(address | static_cast<uint8_t>(TMC4361A_WRITE_BIT)), x1, x2, x3, x4};
  42. readWriteArray(&data[0], 5);
  43. m_status = data[0];
  44. value = ((uint32_t)x1 << 24) | ((uint32_t)x2 << 16) | (x3 << 8) | x4;
  45. // Write to the shadow register and mark the register dirty
  46. address = TMC_ADDRESS(address);
  47. shadowRegister[address] = value;
  48. }
  49. void TMC4361A::readWriteCover(uint8_t *data, size_t length) {
  50. CriticalContext cc;
  51. // Buffering old values to not interrupt manual covering
  52. int32_t old_high = shadowRegister[TMC4361A_COVER_HIGH_WR];
  53. int32_t old_low = shadowRegister[TMC4361A_COVER_LOW_WR];
  54. // Check if datagram length is valid
  55. if (length == 0 || length > 8) return;
  56. uint8_t bytes[8] = {0};
  57. uint32_t tmp;
  58. size_t i;
  59. // Copy data into buffer of maximum cover datagram length (8 bytes)
  60. for (i = 0; i < length; i++) bytes[i] = data[length - i - 1];
  61. // Send the datagram
  62. if (length > 4) writeDatagram(TMC4361A_COVER_HIGH_WR, bytes[7], bytes[6], bytes[5], bytes[4]);
  63. writeDatagram(TMC4361A_COVER_LOW_WR, bytes[3], bytes[2], bytes[1], bytes[0]);
  64. zos_delay(10);
  65. // Read the reply
  66. if (length > 4) {
  67. tmp = readInt(TMC4361A_COVER_DRV_HIGH_RD);
  68. bytes[4] = BYTE(tmp, 0);
  69. bytes[5] = BYTE(tmp, 1);
  70. bytes[6] = BYTE(tmp, 2);
  71. bytes[7] = BYTE(tmp, 3);
  72. }
  73. tmp = readInt(TMC4361A_COVER_DRV_LOW_RD);
  74. bytes[0] = BYTE(tmp, 0);
  75. bytes[1] = BYTE(tmp, 1);
  76. bytes[2] = BYTE(tmp, 2);
  77. bytes[3] = BYTE(tmp, 3);
  78. // Write the reply to the data array
  79. for (i = 0; i < length; i++) {
  80. data[length - i - 1] = bytes[i];
  81. }
  82. // Rewriting old values to prevent interrupting manual covering. Imitating unchanged values and state.
  83. writeInt(TMC4361A_COVER_HIGH_WR, old_high);
  84. shadowRegister[TMC4361A_COVER_LOW_WR] = old_low;
  85. }
  86. TMC4361A::TMC4361A(/* args */) {
  87. m_driver_ic_type = IC_TMC2130;
  88. m_lastCallPeriodicJobTick = 0;
  89. // m_reachtarget = false;
  90. }
  91. /**
  92. * @brief
  93. * TMC-APIеtmc4361A_reset/restoreʱTMC-APIеķʼоƬļĴ
  94. * Ĵʼ֮󣬻??
  95. * ǿУоƬIJּĴгʼ??
  96. * @param state
  97. */
  98. void TMC4361A::tmc4361AConfigCallback(ConfigState state) {}
  99. void TMC4361A::writeSubRegister(uint8_t address, uint32_t mask, uint32_t shift, uint32_t value) { //
  100. PRV_FIELD_WRITE(address, mask, shift, value);
  101. }
  102. void TMC4361A::setAcceleration(float accelerationpps2) {
  103. /**
  104. * @brief
  105. * TMC4361A_AMAX:ģʽʹõƵģʽ
  106. *
  107. * Frequency mode: [pulses per sec2]
  108. * 22 digits and 2 decimal places: 250 mpps^2 ?? AMAX ?? 4 Mpps^2
  109. * Direct mode: [?v per clk cycle]
  110. * a[?v per clk_cycle]= AMAX / 2^37
  111. * AMAX [pps2] = AMAX / 237 ?? fCLK^2
  112. */
  113. int32_t acc = (int32_t)accelerationpps2;
  114. writeInt(TMC4361A_AMAX, acc << 2);
  115. }
  116. void TMC4361A::setDeceleration(float accelerationpps2) {
  117. /**
  118. * @brief
  119. * TMC4361A_DMAX:ģʽʹõƵģʽ
  120. *
  121. * Frequency mode: [pulses per sec2]
  122. * 22 digits and 2 decimal places: 250 mpps^2 ?? AMAX ?? 4 Mpps^2
  123. * Direct mode: [?v per clk cycle]
  124. * a[?v per clk_cycle]= AMAX / 2^37
  125. * AMAX [pps2] = AMAX / 237 ?? fCLK^2
  126. */
  127. int32_t acc = (int32_t)accelerationpps2;
  128. writeInt(TMC4361A_DMAX, acc << 2);
  129. }
  130. void TMC4361A::initialize(cfg_t *cfg) {
  131. m_spi = cfg->spi;
  132. m_csgpio = cfg->csgpio;
  133. m_resetPin = cfg->resetPin;
  134. m_fREEZEPin = cfg->fREEZEPin;
  135. m_ennPin = cfg->ennPin;
  136. m_driverIC_resetPin = cfg->driverIC_resetPin;
  137. m_driverIC_ennPin = cfg->driverIC_ennPin;
  138. m_driver_ic_type = IC_TMC2160;
  139. m_registerAccessTable = &tmc4361A_defaultRegisterAccess[0];
  140. m_defaultRegisterResetState = &tmc4361A_defaultRegisterResetState[0];
  141. memset(shadowRegister, 0, sizeof(shadowRegister));
  142. SET_PIN(m_resetPin, true);
  143. SET_PIN(m_fREEZEPin, true);
  144. SET_PIN(m_ennPin, true);
  145. reset();
  146. driverIC_reset();
  147. setAcceleration(500000);
  148. setDeceleration(500000);
  149. enableIC(true);
  150. zchip_clock_early_delayus(300 * 1000);
  151. zchip_clock_early_delayus(300 * 1000);
  152. driverIC_setIHOLD_IRUN(1, 3, 0); // ע��Ҫ������IHOLD������IRUN,���������ܲ�����
  153. }
  154. uint8_t TMC4361A::reset() {
  155. // Pulse the low-active hardware reset pin
  156. stop();
  157. SET_PIN(m_resetPin, false);
  158. zchip_clock_early_delayus(1000);
  159. SET_PIN(m_resetPin, true);
  160. /**
  161. * @brief оƬĴ??
  162. *
  163. */
  164. for (uint32_t add = 0; add < TMC4361A_REGISTER_COUNT; add++) {
  165. if (!TMC_IS_RESETTABLE(m_registerAccessTable[add])) {
  166. continue;
  167. }
  168. writeInt(add, m_defaultRegisterResetState[add]);
  169. }
  170. uint8_t driver, dataLength;
  171. uint32_t value;
  172. // Setup SPI
  173. switch (m_driver_ic_type) {
  174. case IC_TMC2130:
  175. case IC_TMC2160:
  176. driver = 0x0C;
  177. dataLength = 0;
  178. break;
  179. case IC_TMC2660:
  180. driver = 0x0B;
  181. dataLength = 0;
  182. break;
  183. default:
  184. driver = 0x0F;
  185. dataLength = 40;
  186. break;
  187. }
  188. value = 0x44400040 | (dataLength << 13) | (driver << 0);
  189. writeInt(TMC4361A_SPIOUT_CONF, value);
  190. writeInt(TMC4361A_CURRENT_CONF, 0x00000003);
  191. writeInt(TMC4361A_SCALE_VALUES, 0x00000000);
  192. return 1;
  193. }
  194. uint8_t TMC4361A::restore() { return 1; }
  195. int32_t TMC4361A::getXACTUAL() { return readInt(TMC4361A_XACTUAL); }
  196. void TMC4361A::setXACTUAL(int32_t value) { writeInt(TMC4361A_XACTUAL, value); }
  197. int32_t TMC4361A::getVACTUAL() { return readInt(TMC4361A_VACTUAL); }
  198. int32_t TMC4361A::getXTARGET() { return readInt(TMC4361A_X_TARGET); }
  199. int32_t TMC4361A::getENC_POS() { return readInt(TMC4361A_ENC_POS); }
  200. void TMC4361A::setENC_POS(int32_t value) { writeInt(TMC4361A_ENC_POS, value); }
  201. int32_t TMC4361A::getENC_POS_DEV() { return readInt(TMC4361A_ENC_POS_DEV_RD); }
  202. void TMC4361A::enableIC(bool enable) {
  203. SET_PIN(m_ennPin, !enable);
  204. SET_PIN(m_driverIC_ennPin, !enable);
  205. }
  206. int32_t tmc4361A_discardVelocityDecimals(int32_t value) {
  207. if (abs(value) > 8000000) {
  208. value = (value < 0) ? -8000000 : 8000000;
  209. }
  210. return value << 8;
  211. }
  212. void TMC4361A::rotate(int32_t velocity) {
  213. m_motor_mode = kvelmode;
  214. PRV_FIELD_WRITE(TMC4361A_RAMPMODE, TMC4361A_OPERATION_MODE_MASK, TMC4361A_OPERATION_MODE_SHIFT, 0);
  215. writeInt(TMC4361A_VMAX, tmc4361A_discardVelocityDecimals(velocity));
  216. }
  217. void TMC4361A::stop() { rotate(0); }
  218. void TMC4361A::moveTo(int32_t position, uint32_t velocityMax) {
  219. m_motor_mode = kposmode;
  220. PRV_FIELD_WRITE(TMC4361A_RAMPMODE, TMC4361A_OPERATION_MODE_MASK, TMC4361A_OPERATION_MODE_SHIFT, 1);
  221. writeInt(TMC4361A_VMAX, tmc4361A_discardVelocityDecimals(velocityMax));
  222. writeInt(TMC4361A_X_TARGET, position);
  223. }
  224. void TMC4361A::moveBy(int32_t relativePosition, uint32_t velocityMax) {
  225. relativePosition += readInt(TMC4361A_XACTUAL);
  226. moveTo(relativePosition, velocityMax);
  227. }
  228. int32_t TMC4361A::readICVersion() {
  229. int32_t value = readInt(TMC4361A_VERSION_NO_RD);
  230. return (value & TMC4361A_VERSION_NO_MASK) >> TMC4361A_VERSION_NO_SHIFT;
  231. }
  232. int32_t TMC4361A::readSubICVersion() { return driverIC_readICVersion(); }
  233. /*******************************************************************************
  234. * 2160 function end *
  235. *******************************************************************************/
  236. uint32_t TMC4361A::readEVENTS() {
  237. uint32_t value = readInt(TMC4361A_EVENTS);
  238. return value;
  239. }
  240. uint32_t TMC4361A::haspassedms(uint32_t now, uint32_t last) {
  241. if (now >= last) {
  242. return now - last;
  243. } else {
  244. return 0xFFFFFFFF - last + now;
  245. }
  246. }
  247. bool TMC4361A::isReachTarget() {
  248. uint32_t value = readInt(TMC4361A_STATUS);
  249. if (m_motor_mode == kposmode) {
  250. return (value & TMC4361A_TARGET_REACHED_F_MASK) > 0;
  251. } else {
  252. return (value & TMC4361A_VEL_REACHED_F_MASK) && (readInt(TMC4361A_VMAX) == 0);
  253. }
  254. }
  255. /*******************************************************************************
  256. * DRIVER_IC *
  257. *******************************************************************************/
  258. #define DRIVER_ID_FIELD_READ(address, mask, shift) FIELD_GET(driverIC_readInt(address), mask, shift)
  259. #define DRIVER_ID_FIELD_WRITE(address, mask, shift, value) (driverIC_writeInt(address, FIELD_SET(driverIC_readInt(address), mask, shift, value)))
  260. void TMC4361A::driverIC_reset() {
  261. SET_PIN(m_driverIC_resetPin, false);
  262. zchip_clock_early_delayus(1000);
  263. SET_PIN(m_driverIC_resetPin, true);
  264. // Reset the dirty bits
  265. int index = 0;
  266. while (true) {
  267. while ((index < TMC2160_REGISTER_COUNT) && !TMC_IS_RESTORABLE(tmc2160_defaultRegisterAccess[index])) {
  268. index++;
  269. }
  270. if (index >= TMC2160_REGISTER_COUNT) {
  271. break;
  272. }
  273. // printf("Resetting register %d\n", index);
  274. driverIC_writeInt(index, tmc2160_defaultRegisterResetState[index]);
  275. index++;
  276. }
  277. driverIC_writeInt(TMC2160_PWMCONF, 0xC40C001E);
  278. driverIC_writeInt(TMC2160_DRV_CONF, 0x00080400);
  279. }
  280. void TMC4361A::driverIC_enableIC(bool enable) { SET_PIN(m_driverIC_ennPin, !enable); }
  281. void TMC4361A::driverIC_writeDatagram(uint8_t address, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4) {
  282. uint8_t data[5] = {static_cast<uint8_t>(address | static_cast<uint8_t>(TMC2160_WRITE_BIT)), x1, x2, x3, x4};
  283. readWriteCover(&data[0], 5);
  284. }
  285. void TMC4361A::driverIC_writeInt(uint8_t address, int32_t value) {
  286. driverIC_writeDatagram(address, BYTE(value, 3), BYTE(value, 2), BYTE(value, 1), BYTE(value, 0));
  287. }
  288. int32_t TMC4361A::driverIC_readInt(uint8_t address) {
  289. address = TMC_ADDRESS(address);
  290. // register not readable -> shadow register copy
  291. if (!TMC_IS_READABLE(tmc2160_defaultRegisterAccess[address])) return 0;
  292. uint8_t data[5];
  293. data[0] = address;
  294. readWriteCover(&data[0], 5);
  295. data[0] = address;
  296. readWriteCover(&data[0], 5);
  297. return ((uint32_t)data[1] << 24) | ((uint32_t)data[2] << 16) | (data[3] << 8) | data[4];
  298. }
  299. void TMC4361A::driverIC_setMotorShaft(bool reverse) {
  300. //
  301. int32_t val = reverse ? 1 : 0;
  302. DRIVER_ID_FIELD_WRITE(TMC2160_GCONF, TMC2160_SHAFT_MASK, TMC2160_SHAFT_SHIFT, val);
  303. }
  304. uint32_t TMC4361A::driverIC_readICVersion() {
  305. int32_t value = driverIC_readInt(TMC2160_IOIN___OUTPUT);
  306. return (value & TMC2160_VERSION_MASK) >> TMC2160_VERSION_SHIFT;
  307. }
  308. void TMC4361A::driverIC_setIHOLD_IRUN(uint8_t ihold, uint8_t irun, uint16_t iholddelay) {
  309. driverIC_writeInt(TMC2160_IHOLD_IRUN, (iholddelay << TMC2160_IHOLDDELAY_SHIFT) | (irun << TMC2160_IRUN_SHIFT) | (ihold << TMC2160_IHOLD_SHIFT));
  310. }
  311. #endif
  312. #endif
  313. #endif