You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

475 lines
15 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
  1. #include "zcanreceiver_master.hpp"
  2. #include "project_configs.h"
  3. #include "sdk\components\zprotocols\errorcode\errorcode.hpp"
  4. #ifdef HAL_CAN_MODULE_ENABLED
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. using namespace iflytop;
  9. using namespace zcr;
  10. #define TAG "ZCanCommnaderMaster"
  11. #define OVER_TIME_MS 5
  12. #define MASK_32BIT(off) (0x01 << (off))
  13. ZCanCommnaderMaster::CFG *ZCanCommnaderMaster::createCFG() {
  14. CFG *cfg = new CFG();
  15. ZASSERT(cfg != NULL);
  16. cfg->deviceId = 1;
  17. #ifdef STM32F103xB
  18. cfg->canHandle = &hcan;
  19. #else
  20. cfg->canHandle = &hcan1;
  21. #endif
  22. cfg->canFilterIndex0 = 0;
  23. cfg->maxFilterNum = 7;
  24. cfg->rxfifoNum = CAN_RX_FIFO0;
  25. return cfg;
  26. }
  27. void ZCanCommnaderMaster::init(CFG *cfg) {
  28. HAL_StatusTypeDef hal_status;
  29. m_config = cfg;
  30. m_on_packet_map_lock.init();
  31. txlock.init();
  32. /**
  33. * @brief ʼCAN
  34. */
  35. /**
  36. * @brief ʼϢbuf
  37. */
  38. m_canPacketRxBuffer[0].dataIsReady = false;
  39. m_canPacketRxBuffer[0].id = 1; // ֻ����������������Ϣ
  40. m_canPacketRxBuffer[0].m_canPacketNum = 0;
  41. /**
  42. * @brief ʼ
  43. */
  44. hal_status = initializeFilter();
  45. if (hal_status != HAL_OK) {
  46. ZLOGE(TAG, "start can initializeFilter fail\r\n");
  47. return;
  48. }
  49. /**
  50. * @brief CAN
  51. */
  52. hal_status = HAL_CAN_Start(m_config->canHandle); // ����CAN
  53. if (hal_status != HAL_OK) {
  54. ZLOGE(TAG, "start can fail\r\n");
  55. return;
  56. }
  57. /**
  58. * @brief ص
  59. */
  60. ZCanIRQDispatcher::instance().regListener(this);
  61. HAL_StatusTypeDef status = activateRxIT();
  62. if (status != HAL_OK) {
  63. ZLOGE(TAG, "activateRxIT fail\r\n");
  64. return;
  65. }
  66. m_loopThread.init("ZCanCommnaderMaster", 1024, osPriorityAboveNormal);
  67. m_loopThread.start([this]() {
  68. while (true) {
  69. loop();
  70. osDelay(1);
  71. }
  72. });
  73. }
  74. HAL_StatusTypeDef ZCanCommnaderMaster::initializeFilter() {
  75. /**
  76. * @brief ID֡ʽ
  77. * [ 27:0 ]
  78. * [ STDID ] [ EXTID ]
  79. * [11 :9] [8:6] [5:0] [17:16] [15:8] [7:0]
  80. * ȼ ֡ ĿID ԴID
  81. */
  82. HAL_StatusTypeDef HAL_Status;
  83. CAN_FilterTypeDef sFilterConfig;
  84. uint32_t filterId;
  85. uint32_t mask;
  86. memset(&sFilterConfig, 0, sizeof(sFilterConfig));
  87. sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; // ��ΪMASKģʽ
  88. sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; // CAN_FILTERSCALE_16BIT
  89. sFilterConfig.FilterFIFOAssignment = m_config->rxfifoNum; // ������������rxfifoNum
  90. sFilterConfig.FilterActivation = ENABLE; // ����������
  91. sFilterConfig.SlaveStartFilterBank = m_config->maxFilterNum; // slave filter start index
  92. /*******************************************************************************
  93. * Ϣ *
  94. *******************************************************************************/
  95. filterId = (0); //
  96. mask = (0); //
  97. sFilterConfig.FilterBank = m_config->canFilterIndex0; //
  98. sFilterConfig.FilterMaskIdLow = mask & 0xffff; //
  99. sFilterConfig.FilterMaskIdHigh = (mask & 0xffff0000) >> 16; //
  100. sFilterConfig.FilterIdLow = filterId & 0xffff; //
  101. sFilterConfig.FilterIdHigh = (filterId & 0xffff0000) >> 16; //
  102. HAL_Status = HAL_CAN_ConfigFilter(m_config->canHandle, &sFilterConfig);
  103. if (HAL_Status != HAL_OK) {
  104. ZLOGE(TAG, "HAL_CAN_ConfigFilter filter0 fail");
  105. return HAL_Status;
  106. }
  107. ZLOGI(TAG, "HAL_CAN_ConfigFilter filterID1 %08x", filterId >> 3);
  108. return HAL_Status;
  109. }
  110. int32_t ZCanCommnaderMaster::sendCmd(int32_t cmdid, int32_t submoduleid, int32_t *param, size_t npara, int32_t *ack, size_t nack, int overtime_ms) {
  111. zcr_cmd_header_t *cmdheader = (zcr_cmd_header_t *)txbuff;
  112. cmdheader->packetType = kptv2_cmd;
  113. cmdheader->packetindex = generateFreeIndex();
  114. cmdheader->cmdmoduleid = MODULE_CMDID(cmdid);
  115. cmdheader->subcmdid = SUBCMDID(cmdid);
  116. cmdheader->submoduleid = submoduleid;
  117. ZLOGI(TAG, "sendCmd %d %d %d %d", cmdheader->packetindex, cmdheader->cmdmoduleid, cmdheader->subcmdid, cmdheader->submoduleid);
  118. int32_t *sendparam = (int32_t *)cmdheader->data;
  119. for (size_t i = 0; i < npara; i++) {
  120. sendparam[i] = param[i];
  121. }
  122. int32_t txlen = sizeof(zcr_cmd_header_t) + npara * sizeof(int32_t);
  123. /**
  124. * @brief ע
  125. */
  126. bool rxdataIsReady = false;
  127. int32_t errocode = 0;
  128. regListener(cmdheader->packetindex, [this, &rxdataIsReady, &ack, &nack, &errocode](CanPacketRxBuffer *report) {
  129. if (report->get_cmdheader()->packetType == kptv2_error_ack) {
  130. auto *error_ack = report->get_data_as<int32_t>();
  131. errocode = *error_ack;
  132. } else {
  133. int32_t *rxbuf = report->get_data_as<int32_t>();
  134. if (ack != nullptr && nack != 0) {
  135. for (size_t i = 0; i < nack; i++) {
  136. ack[i] = rxbuf[i];
  137. }
  138. }
  139. }
  140. rxdataIsReady = true;
  141. });
  142. /**
  143. * @brief Ϣ
  144. */
  145. sendPacket(txbuff, txlen);
  146. /**
  147. * @brief ȴִ
  148. */
  149. uint32_t enterticket = zos_get_tick();
  150. while (!rxdataIsReady) {
  151. if (zos_haspassedms(enterticket) > (uint32_t)overtime_ms) {
  152. ZLOGE(TAG, "sendPacketBlock timeout");
  153. unregListener(cmdheader->packetindex);
  154. return err::kovertime;
  155. }
  156. osDelay(1);
  157. }
  158. unregListener(cmdheader->packetindex);
  159. return errocode;
  160. }
  161. void ZCanCommnaderMaster::regListener(uint16_t index, zcan_commnader_master_onpacket_t onack) {
  162. zlock_guard l(m_on_packet_map_lock);
  163. if (m_on_packet_map.size() > 10000) {
  164. ZLOGW(TAG, "m_on_packet_map.size() = %d>10000", m_on_packet_map.size());
  165. }
  166. ZCanCommnaderMasterListener listener;
  167. listener.on_ack = onack;
  168. m_on_packet_map[index] = listener;
  169. }
  170. void ZCanCommnaderMaster::unregListener(uint16_t index) {
  171. zlock_guard l(m_on_packet_map_lock);
  172. auto it = m_on_packet_map.find(index);
  173. if (it != m_on_packet_map.end()) {
  174. m_on_packet_map.erase(it);
  175. }
  176. }
  177. int ZCanCommnaderMaster::getListenerNum() {
  178. zlock_guard l(m_on_packet_map_lock);
  179. return m_on_packet_map.size();
  180. }
  181. bool ZCanCommnaderMaster::isListenerReg(uint16_t index) {
  182. zlock_guard l(m_on_packet_map_lock);
  183. auto it = m_on_packet_map.find(index);
  184. if (it != m_on_packet_map.end()) {
  185. return true;
  186. }
  187. return false;
  188. }
  189. void ZCanCommnaderMaster::callListener(CanPacketRxBuffer *report) {
  190. uint16_t index = report->get_cmdheader()->packetindex;
  191. {
  192. zlock_guard l(m_on_packet_map_lock);
  193. auto it = m_on_packet_map.find(index);
  194. if (it != m_on_packet_map.end()) {
  195. if (report->get_cmdheader()->packetType == kptv2_ack || report->get_cmdheader()->packetType == kptv2_error_ack) {
  196. if (it->second.on_ack) it->second.on_ack(report);
  197. }
  198. }
  199. }
  200. }
  201. uint16_t ZCanCommnaderMaster::generateFreeIndex() {
  202. m_index_off++;
  203. uint16_t count = 0;
  204. if (m_index_off == 0) m_index_off = 1;
  205. while (isListenerReg(m_index_off)) {
  206. m_index_off++;
  207. if (m_index_off == 0) m_index_off = 1;
  208. count++;
  209. if (count == 0) {
  210. ZLOGE(TAG, "generateFreeIndex fail");
  211. NVIC_SystemReset();
  212. }
  213. }
  214. return m_index_off;
  215. }
  216. void ZCanCommnaderMaster::sendPacket(uint8_t *packet, size_t len) {
  217. zlock_guard txlock_guard(txlock);
  218. /**
  219. * @brief
  220. */
  221. int npacket = len / 8 + (len % 8 == 0 ? 0 : 1);
  222. if (npacket > 255) {
  223. ZLOGE(TAG, "sendPacket fail, len:%d", len);
  224. return;
  225. }
  226. int finalpacketlen = len % 8 == 0 ? 8 : len % 8;
  227. for (uint8_t i = 0; i < npacket; i++) {
  228. bool suc = false;
  229. if (i == npacket - 1) {
  230. suc = sendPacketSub(npacket, i, packet + i * 8, finalpacketlen, OVER_TIME_MS);
  231. } else {
  232. suc = sendPacketSub(npacket, i, packet + i * 8, 8, OVER_TIME_MS);
  233. }
  234. if (!suc) {
  235. ZLOGE(TAG, "sendPacket fail, packet(%d:%d)", npacket, i);
  236. return;
  237. }
  238. }
  239. }
  240. bool ZCanCommnaderMaster::sendPacketSub(int npacket, int packetIndex, uint8_t *packet, size_t len, int overtimems) {
  241. // ZLOGI(TAG, "sendPacketSub(%d:%d)", npacket, packetIndex);
  242. CAN_TxHeaderTypeDef pHeader;
  243. uint8_t aData[8] /*8byte table*/;
  244. uint32_t txMailBox = 0;
  245. uint32_t enterticket = zos_get_tick();
  246. memset(&pHeader, 0, sizeof(pHeader));
  247. memset(aData, 0, sizeof(aData));
  248. pHeader.StdId = 0x00;
  249. pHeader.ExtId = (m_config->deviceId << 16) | (npacket << 8) | packetIndex;
  250. pHeader.IDE = CAN_ID_EXT;
  251. pHeader.RTR = CAN_RTR_DATA;
  252. pHeader.DLC = len;
  253. pHeader.TransmitGlobalTime = DISABLE;
  254. memcpy(aData, packet, len);
  255. m_lastTransmitStatus = HAL_CAN_AddTxMessage(m_config->canHandle, &pHeader, aData, &txMailBox);
  256. if (m_lastTransmitStatus != HAL_OK) {
  257. ZLOGE(TAG, "HAL_CAN_AddTxMessage fail");
  258. return false;
  259. }
  260. while (HAL_CAN_IsTxMessagePending(m_config->canHandle, txMailBox)) {
  261. if (zos_haspassedms(enterticket) > (uint32_t)overtimems) {
  262. m_lastTransmitStatus = HAL_TIMEOUT;
  263. HAL_CAN_AbortTxRequest(m_config->canHandle, txMailBox);
  264. return false;
  265. }
  266. // m_os->sleepMS(1);
  267. }
  268. if (txPacketInterval_ms > 0) {
  269. osDelay(txPacketInterval_ms);
  270. }
  271. return true;
  272. }
  273. bool ZCanCommnaderMaster::getRxMessage(CAN_RxHeaderTypeDef *pHeader, uint8_t aData[] /*8byte table*/) {
  274. /**
  275. * @brief ȡǰFIFOл˶֡
  276. */
  277. uint32_t level = HAL_CAN_GetRxFifoFillLevel(m_config->canHandle, m_config->rxfifoNum);
  278. if (level == 0) {
  279. return false;
  280. }
  281. HAL_StatusTypeDef HAL_RetVal;
  282. HAL_RetVal = HAL_CAN_GetRxMessage(m_config->canHandle, m_config->rxfifoNum, pHeader, aData);
  283. if (HAL_OK == HAL_RetVal) {
  284. // �������յ���can��������
  285. return true;
  286. }
  287. return false;
  288. }
  289. void ZCanCommnaderMaster::initCanPacketRxBuffer(CanPacketRxBuffer *buf, uint16_t id) {
  290. memset(buf, 0, sizeof(CanPacketRxBuffer));
  291. buf->id = id;
  292. }
  293. CanPacketRxBuffer *ZCanCommnaderMaster::allocCanPacketRxBufferInIRQ(uint16_t id) {
  294. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  295. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  296. // ˵����ǰid�Ļ����Ѿ����ڣ������ڶ������������ռ���
  297. if (!m_canPacketRxBuffer[i].dataIsReady) {
  298. initCanPacketRxBuffer(&m_canPacketRxBuffer[i], id);
  299. m_canPacketRxBuffer[i].isUsed = true;
  300. return &m_canPacketRxBuffer[i];
  301. }
  302. }
  303. }
  304. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  305. if (!m_canPacketRxBuffer[i].isUsed) {
  306. initCanPacketRxBuffer(&m_canPacketRxBuffer[i], id);
  307. m_canPacketRxBuffer[i].isUsed = true;
  308. return &m_canPacketRxBuffer[i];
  309. }
  310. }
  311. return nullptr;
  312. }
  313. CanPacketRxBuffer *ZCanCommnaderMaster::findCanPacketRxBufferInIRQ(uint16_t id) {
  314. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  315. if (!m_canPacketRxBuffer[i].dataIsReady && m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  316. return &m_canPacketRxBuffer[i];
  317. }
  318. }
  319. return nullptr;
  320. }
  321. void ZCanCommnaderMaster::freeCanPacketRxBuffer(uint16_t id) {
  322. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  323. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].id == id) {
  324. m_canPacketRxBuffer[i].isUsed = false;
  325. return;
  326. }
  327. }
  328. }
  329. void ZCanCommnaderMaster::STM32_HAL_onCAN_RxFifo0MsgPending(CAN_HandleTypeDef *canHandle) {
  330. /**
  331. * @brief ж
  332. */
  333. // ZLOG_INFO("%s\n", __FUNCTION__);
  334. // printf("------------------%s\n", __FUNCTION__);
  335. if (canHandle != m_config->canHandle) {
  336. return;
  337. }
  338. /**
  339. * @brief canյϢ
  340. */
  341. CAN_RxHeaderTypeDef pHeader;
  342. uint8_t aData[8] /*8byte table*/;
  343. while (getRxMessage(&pHeader, aData)) {
  344. /**
  345. * @brief Ϣʽ
  346. *
  347. * [2] [3bit] [8bit] [8bit] [8bit]
  348. * , from frameNum frameId
  349. */
  350. uint8_t from = (pHeader.ExtId >> 16 & 0xFF);
  351. uint8_t nframe = (pHeader.ExtId & 0xFF00) >> 8;
  352. uint8_t frameId = (pHeader.ExtId & 0x00FF);
  353. CanPacketRxBuffer *rxbuf = nullptr;
  354. if (frameId == 0) {
  355. rxbuf = allocCanPacketRxBufferInIRQ(from);
  356. rxbuf->m_npacket = nframe;
  357. } else {
  358. rxbuf = findCanPacketRxBufferInIRQ(from);
  359. }
  360. if (!rxbuf) return;
  361. if (rxbuf->m_canPacketNum < ZARRAY_SIZE(rxbuf->m_canPacket)) {
  362. rxbuf->m_canPacket[rxbuf->m_canPacketNum].pHeader = pHeader;
  363. memcpy(rxbuf->m_canPacket[rxbuf->m_canPacketNum].aData, aData, 8);
  364. rxbuf->m_canPacketNum++;
  365. }
  366. /**
  367. * @brief
  368. */
  369. if (nframe == frameId + 1) {
  370. rxbuf->dataIsReady = true;
  371. if ((rxbuf->m_canPacketNum) != rxbuf->m_npacket) rxbuf->lostpacket = true;
  372. }
  373. }
  374. // deactivateRxIT();
  375. }
  376. void ZCanCommnaderMaster::STM32_HAL_onCAN_Error(CAN_HandleTypeDef *canHandle) {
  377. if (canHandle != m_config->canHandle) {
  378. return;
  379. }
  380. ZLOGE(TAG, "onCAN_Error\r\n");
  381. }
  382. void ZCanCommnaderMaster::processReadyPacket(CanPacketRxBuffer *rxbuf) {
  383. int dataoff = 0;
  384. for (size_t i = 0; i < rxbuf->m_canPacketNum; i++) {
  385. memcpy(rxbuf->rxdata + dataoff, rxbuf->m_canPacket[i].aData, rxbuf->m_canPacket[i].pHeader.DLC);
  386. dataoff += rxbuf->m_canPacket[i].pHeader.DLC;
  387. rxbuf->rxdataSize = dataoff;
  388. }
  389. if (rxbuf->lostpacket) {
  390. ZLOGE(TAG, "lostpacket %d %d", rxbuf->m_canPacketNum, rxbuf->m_npacket);
  391. } else {
  392. callListener(rxbuf);
  393. }
  394. rxbuf->dataIsReady = false;
  395. }
  396. void ZCanCommnaderMaster::loop() {
  397. /**
  398. * @brief MainLoop
  399. */
  400. for (size_t i = 0; i < CAN_PACKET_RX_BUFFER_NUM; i++) {
  401. if (m_canPacketRxBuffer[i].isUsed && m_canPacketRxBuffer[i].dataIsReady) {
  402. processReadyPacket(&m_canPacketRxBuffer[i]);
  403. }
  404. }
  405. }
  406. HAL_StatusTypeDef ZCanCommnaderMaster::activateRxIT() {
  407. HAL_StatusTypeDef hal_status = HAL_ERROR;
  408. if (m_config->rxfifoNum == CAN_RX_FIFO0) {
  409. hal_status = HAL_CAN_ActivateNotification(m_config->canHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  410. } else if (m_config->rxfifoNum == CAN_RX_FIFO1) {
  411. hal_status = HAL_CAN_ActivateNotification(m_config->canHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  412. } else {
  413. ZLOGE(TAG, "start can HAL_CAN_ActivateNotification CAN_IT_RX_FIFO0_MSG_PENDING fail\r\n");
  414. return hal_status;
  415. }
  416. return hal_status;
  417. }
  418. HAL_StatusTypeDef ZCanCommnaderMaster::deactivateRxIT() {
  419. HAL_StatusTypeDef hal_status = HAL_ERROR;
  420. if (m_config->rxfifoNum == CAN_RX_FIFO0) {
  421. hal_status = HAL_CAN_DeactivateNotification(m_config->canHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  422. } else if (m_config->rxfifoNum == CAN_RX_FIFO1) {
  423. hal_status = HAL_CAN_DeactivateNotification(m_config->canHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  424. } else {
  425. ZLOGE(TAG, "start can HAL_CAN_ActivateNotification CAN_IT_RX_FIFO0_MSG_PENDING fail\r\n");
  426. return hal_status;
  427. }
  428. return hal_status;
  429. }
  430. size_t ZCanCommnaderMaster::safe_memcpy(void *dst, size_t dst_max_size, void *src, size_t src_len) { //
  431. size_t cpysize = dst_max_size < src_len ? dst_max_size : src_len;
  432. memcpy(dst, src, cpysize);
  433. return cpysize;
  434. }
  435. #endif