You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

418 lines
7.4 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
  1. #include "chip_helper.hpp"
  2. #include "sdk\chip\basic\logger.hpp"
  3. extern "C" {
  4. static uint8_t g_port_exit_critical_count;
  5. void chip_critical_enter(void) {
  6. if (g_port_exit_critical_count == 0) {
  7. __disable_irq();
  8. }
  9. g_port_exit_critical_count++;
  10. }
  11. void chip_critical_exit(void) {
  12. g_port_exit_critical_count--;
  13. if (g_port_exit_critical_count == 0) {
  14. __enable_irq();
  15. }
  16. }
  17. GPIO_TypeDef* chip_get_gpio(Pin_t pin) {
  18. int port = pin >> 4;
  19. switch (port) {
  20. case 1:
  21. #ifdef GPIOA
  22. return GPIOA;
  23. #endif
  24. break;
  25. case 2:
  26. #ifdef GPIOB
  27. return GPIOB;
  28. #endif
  29. break;
  30. case 3:
  31. #ifdef GPIOC
  32. return GPIOC;
  33. #endif
  34. break;
  35. case 4:
  36. #ifdef GPIOD
  37. return GPIOD;
  38. #endif
  39. break;
  40. case 5:
  41. #ifdef GPIOE
  42. return GPIOE;
  43. #endif
  44. break;
  45. case 6:
  46. #ifdef GPIOF
  47. return GPIOF;
  48. #endif
  49. break;
  50. case 7:
  51. #ifdef GPIOG
  52. return GPIOG;
  53. #endif
  54. break;
  55. default:
  56. break;
  57. }
  58. return NULL;
  59. }
  60. uint16_t chip_get_pinoff(Pin_t pin) {
  61. uint16_t pinoff = pin & 0x0F;
  62. switch (pinoff) {
  63. case 0:
  64. return GPIO_PIN_0;
  65. case 1:
  66. return GPIO_PIN_1;
  67. case 2:
  68. return GPIO_PIN_2;
  69. case 3:
  70. return GPIO_PIN_3;
  71. case 4:
  72. return GPIO_PIN_4;
  73. case 5:
  74. return GPIO_PIN_5;
  75. case 6:
  76. return GPIO_PIN_6;
  77. case 7:
  78. return GPIO_PIN_7;
  79. case 8:
  80. return GPIO_PIN_8;
  81. case 9:
  82. return GPIO_PIN_9;
  83. case 10:
  84. return GPIO_PIN_10;
  85. case 11:
  86. return GPIO_PIN_11;
  87. case 12:
  88. return GPIO_PIN_12;
  89. case 13:
  90. return GPIO_PIN_13;
  91. case 14:
  92. return GPIO_PIN_14;
  93. case 15:
  94. return GPIO_PIN_15;
  95. default:
  96. break;
  97. };
  98. return 0;
  99. }
  100. // TIM2
  101. // TIM3
  102. // TIM4
  103. // TIM5
  104. // TIM6
  105. // TIM7
  106. // TIM12
  107. // TIM13
  108. // TIM14
  109. // TIM1
  110. // TIM8
  111. // TIM9
  112. // TIM10
  113. // TIM11
  114. // TIM_CR1_CEN_Pos
  115. const char* chip_tim_get_name(TIM_TypeDef* tim) {
  116. #ifdef TIM1
  117. if (tim == TIM1) {
  118. return "TIM1";
  119. }
  120. #endif
  121. #ifdef TIM2
  122. if (tim == TIM2) {
  123. return "TIM2";
  124. }
  125. #endif
  126. #ifdef TIM3
  127. if (tim == TIM3) {
  128. return "TIM3";
  129. }
  130. #endif
  131. #ifdef TIM4
  132. if (tim == TIM4) {
  133. return "TIM4";
  134. }
  135. #endif
  136. #ifdef TIM5
  137. if (tim == TIM5) {
  138. return "TIM5";
  139. }
  140. #endif
  141. #ifdef TIM6
  142. if (tim == TIM6) {
  143. return "TIM6";
  144. }
  145. #endif
  146. #ifdef TIM7
  147. if (tim == TIM7) {
  148. return "TIM7";
  149. }
  150. #endif
  151. #ifdef TIM8
  152. if (tim == TIM8) {
  153. return "TIM8";
  154. }
  155. #endif
  156. #ifdef TIM9
  157. if (tim == TIM9) {
  158. return "TIM9";
  159. }
  160. #endif
  161. #ifdef TIM10
  162. if (tim == TIM10) {
  163. return "TIM10";
  164. }
  165. #endif
  166. #ifdef TIM11
  167. if (tim == TIM11) {
  168. return "TIM11";
  169. }
  170. #endif
  171. #ifdef TIM12
  172. if (tim == TIM12) {
  173. return "TIM12";
  174. }
  175. #endif
  176. #ifdef TIM13
  177. if (tim == TIM13) {
  178. return "TIM13";
  179. }
  180. #endif
  181. #ifdef TIM14
  182. if (tim == TIM14) {
  183. return "TIM14";
  184. }
  185. #endif
  186. return "unknowntim";
  187. }
  188. const char* chip_gpio_group_get_name(GPIO_TypeDef* gpio_group) {
  189. if (gpio_group == GPIOA) {
  190. return "GPIOA";
  191. }
  192. if (gpio_group == GPIOB) {
  193. return "GPIOB";
  194. }
  195. if (gpio_group == GPIOC) {
  196. return "GPIOC";
  197. }
  198. if (gpio_group == GPIOD) {
  199. return "GPIOD";
  200. }
  201. if (gpio_group == GPIOE) {
  202. return "GPIOE";
  203. }
  204. if (gpio_group == GPIOF) {
  205. return "GPIOF";
  206. }
  207. if (gpio_group == GPIOG) {
  208. return "GPIOG";
  209. }
  210. return "unknown gpio group";
  211. }
  212. const char* chip_pinoff_get_name(uint16_t pinoff) {
  213. if (pinoff == GPIO_PIN_0) {
  214. return "0";
  215. }
  216. if (pinoff == GPIO_PIN_1) {
  217. return "1";
  218. }
  219. if (pinoff == GPIO_PIN_2) {
  220. return "2";
  221. }
  222. if (pinoff == GPIO_PIN_3) {
  223. return "3";
  224. }
  225. if (pinoff == GPIO_PIN_4) {
  226. return "4";
  227. }
  228. if (pinoff == GPIO_PIN_5) {
  229. return "5";
  230. }
  231. if (pinoff == GPIO_PIN_6) {
  232. return "6";
  233. }
  234. if (pinoff == GPIO_PIN_7) {
  235. return "7";
  236. }
  237. if (pinoff == GPIO_PIN_8) {
  238. return "8";
  239. }
  240. if (pinoff == GPIO_PIN_9) {
  241. return "9";
  242. }
  243. if (pinoff == GPIO_PIN_10) {
  244. return "10";
  245. }
  246. if (pinoff == GPIO_PIN_11) {
  247. return "11";
  248. }
  249. if (pinoff == GPIO_PIN_12) {
  250. return "12";
  251. }
  252. if (pinoff == GPIO_PIN_13) {
  253. return "13";
  254. }
  255. if (pinoff == GPIO_PIN_14) {
  256. return "14";
  257. }
  258. if (pinoff == GPIO_PIN_15) {
  259. return "15";
  260. }
  261. return "unknown pinoff";
  262. }
  263. // // no tim1
  264. // TIM2_IRQn
  265. // TIM3_IRQn
  266. // TIM4_IRQn
  267. // TIM5_IRQn
  268. // TIM6_DAC_IRQn
  269. // TIM7_IRQn
  270. // //no tim8
  271. // TIM1_BRK_TIM9_IRQn
  272. // TIM1_UP_TIM10_IRQn
  273. // TIM1_TRG_COM_TIM11_IRQn
  274. // TIM8_BRK_TIM12_IRQn
  275. // TIM8_UP_TIM13_IRQn
  276. // TIM8_TRG_COM_TIM14_IRQn
  277. IRQn_Type chip_tim_get_irq(TIM_HandleTypeDef* tim) {
  278. if (tim->Instance == TIM1) {
  279. EARLY_ASSERT(false);
  280. }
  281. if (tim->Instance == TIM2) {
  282. return TIM2_IRQn;
  283. }
  284. if (tim->Instance == TIM3) {
  285. return TIM3_IRQn;
  286. }
  287. if (tim->Instance == TIM4) {
  288. return TIM4_IRQn;
  289. }
  290. if (tim->Instance == TIM5) {
  291. return TIM5_IRQn;
  292. }
  293. if (tim->Instance == TIM6) {
  294. return TIM6_DAC_IRQn;
  295. }
  296. if (tim->Instance == TIM7) {
  297. return TIM7_IRQn;
  298. }
  299. if (tim->Instance == TIM8) {
  300. EARLY_ASSERT(false);
  301. }
  302. if (tim->Instance == TIM9) {
  303. return TIM1_BRK_TIM9_IRQn;
  304. }
  305. if (tim->Instance == TIM10) {
  306. return TIM1_UP_TIM10_IRQn;
  307. }
  308. if (tim->Instance == TIM11) {
  309. return TIM1_TRG_COM_TIM11_IRQn;
  310. }
  311. if (tim->Instance == TIM12) {
  312. return TIM8_BRK_TIM12_IRQn;
  313. }
  314. if (tim->Instance == TIM13) {
  315. return TIM8_UP_TIM13_IRQn;
  316. }
  317. if (tim->Instance == TIM14) {
  318. return TIM8_TRG_COM_TIM14_IRQn;
  319. }
  320. //
  321. EARLY_ASSERT(false);
  322. return (IRQn_Type)0;
  323. }
  324. uint32_t chip_get_timer_clock_sorce_freq(TIM_HandleTypeDef* tim) {
  325. uint32_t timClkFreq = 0;
  326. #if 0
  327. uint32_t pclk1Freq = HAL_RCC_GetPCLK1Freq();
  328. uint32_t pclk2Freq = HAL_RCC_GetPCLK2Freq();
  329. uint32_t sysClkFreq = HAL_RCC_GetSysClockFreq();
  330. #endif
  331. uint32_t pFLatency;
  332. RCC_ClkInitTypeDef clkconfig;
  333. HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
  334. bool isAPB2 = false;
  335. #ifdef TIM1
  336. if (tim->Instance == TIM1) isAPB2 = true;
  337. #endif
  338. #ifdef TIM8
  339. if (tim->Instance == TIM8) isAPB2 = true;
  340. #endif
  341. #ifdef TIM9
  342. if (tim->Instance == TIM9) isAPB2 = true;
  343. #endif
  344. #ifdef TIM10
  345. if (tim->Instance == TIM10) isAPB2 = true;
  346. #endif
  347. #ifdef TIM11
  348. if (tim->Instance == TIM11) isAPB2 = true;
  349. #endif
  350. if (isAPB2) {
  351. if (clkconfig.APB2CLKDivider == RCC_HCLK_DIV1) {
  352. timClkFreq = HAL_RCC_GetPCLK2Freq();
  353. } else {
  354. timClkFreq = 2 * HAL_RCC_GetPCLK2Freq();
  355. }
  356. } else {
  357. if (clkconfig.APB1CLKDivider == RCC_HCLK_DIV1) {
  358. timClkFreq = HAL_RCC_GetPCLK1Freq();
  359. } else {
  360. timClkFreq = 2 * HAL_RCC_GetPCLK1Freq();
  361. }
  362. }
  363. return timClkFreq;
  364. }
  365. }
  366. static float zfeq(float val0, float val1, float eps = 0.0001) {
  367. float dv = val0 - val1;
  368. if (dv < 0) dv = -dv;
  369. if (dv < eps) return true;
  370. return false;
  371. }
  372. bool chip_calculate_prescaler_and_autoreload_by_expect_freq(uint32_t timerInClk, float infreqhz, uint32_t* prescaler, uint32_t* autoreload) {
  373. /**
  374. * @brief Ĵֵ
  375. */
  376. ZEARLY_ASSERT(!zfeq(infreqhz, 0, 0.01));
  377. float psc_x_arr = timerInClk / infreqhz;
  378. uint32_t psc = 0;
  379. uint32_t arr = 65534;
  380. for (; arr > 2; arr--) {
  381. psc = psc_x_arr / arr;
  382. if (psc >= 1) {
  383. uint32_t tmparr = psc_x_arr / psc;
  384. if (tmparr >= 65534) continue;
  385. break;
  386. }
  387. }
  388. if (psc == 0) return false;
  389. if (arr <= 3) return false; // ��ʱ��һ���ڵķֱ���̫С��
  390. arr = psc_x_arr / psc;
  391. int psc_x_arr_real = arr * psc;
  392. float realfreq = timerInClk / psc_x_arr_real;
  393. arr = arr - 1;
  394. psc = psc - 1;
  395. // uint16_t comparevalue = 50 / 100.0 * arr;
  396. *prescaler = psc;
  397. *autoreload = arr;
  398. return true;
  399. }