You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

388 lines
12 KiB

#include "zfpga_commander.hpp"
#include <stdlib.h>
#include <string.h>
//
#include "zqui/base/logger.hpp"
#include "zqui/base/zexception.hpp"
#include "zqui/channelmgr/channelmgr.hpp"
using namespace iflytop;
#define TAG "ZFPGACommander"
QTSerialChannel *serial_ch;
#define DEBUG
#define PACKET_LEN(__packet) (sizeof(zaf_packet_header_t) + (__packet->ndata) * sizeof(uint32_t) + 1 /*checksum*/ + 2 /*tail*/)
#define DO_CMD(exptr) \
{ \
zaf_error_code_t ecode = exptr; \
if (ecode != kaf_ec_success) return ecode; \
}
static string hex2str(uint8_t *hex, size_t len) {
string str;
for (size_t i = 0; i < len; i++) {
char buf[3];
sprintf(buf, "%02X", hex[i]);
str += buf;
}
return str;
}
void ZFPGACommander::initialize() {
//
serial_ch = &ChannelMgr::ins()->serialCh;
serial_ch->regRxListener([this](uint8_t *data, size_t len) {
{
lock_guard<mutex> lock(lock_);
if (len + m_rxlen > sizeof(m_rxcache)) {
m_rxlen = 0;
}
memcpy(m_rxcache + m_rxlen, data, len);
m_rxlen += len;
}
});
m_thread.reset(new thread([this]() {
uint32_t last_rx_cnt = 0;
uint8_t rx_process_cache[1024];
uint32_t rx_process_cache_len = 0;
while (true) {
this_thread::sleep_for(chrono::milliseconds(4));
{
lock_guard<mutex> lock(lock_);
if (last_rx_cnt == m_rxlen && m_rxlen != 0) {
memcpy(rx_process_cache, m_rxcache, m_rxlen);
rx_process_cache_len = m_rxlen;
m_rxlen = 0;
last_rx_cnt = 0;
}
}
if (rx_process_cache_len != 0) {
processRxData(rx_process_cache, rx_process_cache_len);
memset(rx_process_cache, 0, sizeof(rx_process_cache));
rx_process_cache_len = 0;
}
last_rx_cnt = m_rxlen;
}
}));
m_online_detect_thread.reset(new thread([this]() {
while (true) {
if (!isconnected) {
this_thread::sleep_for(chrono::milliseconds(100));
} else {
this_thread::sleep_for(chrono::milliseconds(3000));
}
bool tostate = false;
if (ping()) {
tostate = true;
} else {
tostate = false;
}
if (tostate != isconnected) {
if (tostate) {
ZLOGI(TAG, "device connected.");
} else {
ZLOGI(TAG, "device disconnected.");
RegInfo_Reset();
}
isconnected = tostate;
if (m_stateCbFn) m_stateCbFn(isconnected);
}
}
}));
}
void ZFPGACommander::regRawDataListener(binary_cb_t cb) { m_raw_data_cb = cb; }
void ZFPGACommander::regStateCbFn(StateCbFn_t cbfn) { this->m_stateCbFn = cbfn; }
bool ZFPGACommander::chIsOn() { return serial_ch->isOpen(); }
void ZFPGACommander::processRxData(uint8_t *rx, uint32_t rxlen) {
#ifdef DEBUG
ZLOGI(TAG, "RX %s", hex2str((uint8_t *)rx, rxlen).c_str());
#endif
for (uint32_t i = 0; i < rxlen; i++) {
zaf_packet_header_t *header = (zaf_packet_header_t *)(&rx[i]);
uint8_t *packetu8 = &rx[i];
if (header->packet_header == PACKET_HEADER) {
uint8_t check = packetu8[header->ndata * 4 + sizeof(zaf_packet_header_t) + 0];
uint8_t tail0 = packetu8[header->ndata * 4 + sizeof(zaf_packet_header_t) + 1];
uint8_t tail1 = packetu8[header->ndata * 4 + sizeof(zaf_packet_header_t) + 2];
uint16_t tail = (tail1 << 8) | tail0;
uint8_t expectcheck = 0;
for (uint32_t j = 2; j < header->ndata * 4 + sizeof(zaf_packet_header_t); j++) {
expectcheck += packetu8[j];
}
if (tail == PACKET_TAIL) {
if (expectcheck == check) {
processRxPacket(header);
} else {
ZLOGE(TAG, "Rx packet check error %d != %d", expectcheck, check);
}
}
}
}
}
void ZFPGACommander::processRxPacket(zaf_packet_header_t *packet) {
//
// ZLOGI(TAG, "RX packet");
// ZLOGI(TAG, " type :%d", packet->packet_type);
// ZLOGI(TAG, " index :%d", packet->index);
// ZLOGI(TAG, " cmd :%d", packet->cmd);
// ZLOGI(TAG, " ndata :%d", packet->ndata);
// for (uint32_t i = 0; i < packet->ndata; i++) {
// ZLOGI(TAG, " data[%d]:%d", i, packet->data[i]);
// }
// ZLOGI(TAG, "Rx.....");
uint32_t packetlen = sizeof(zaf_packet_header_t) + packet->ndata * 4 + 3;
if (m_raw_data_cb) {
m_raw_data_cb(kuart_raw_rx, (uint8_t *)packet, packetlen);
}
if (packet->packet_type == kzaf_packet_type_receipt) {
lock_guard<mutex> lock(m_rxReceiptContext_lock);
if (m_rxReceiptContext.waittingForReceipt) {
if (m_rxReceiptContext.waittingIndex == packet->index) {
m_rxReceiptContext.receiptIsReady = true;
m_rxReceiptContext.receiptLen = PACKET_LEN(packet);
memcpy(m_rxReceiptContext.receipt, packet, PACKET_LEN(packet));
}
m_rxReceiptContext.waittingForReceipt = false;
}
} else if (packet->packet_type == kzaf_packet_type_heart) {
}
}
void ZFPGACommander::resetRxContext(int32_t cmdIndex) {
lock_guard<mutex> lock(m_rxReceiptContext_lock);
m_rxReceiptContext.waittingIndex = cmdIndex;
m_rxReceiptContext.waittingForReceipt = true;
m_rxReceiptContext.receiptIsReady = false;
m_rxReceiptContext.receiptLen = 0;
}
shared_ptr<Receipt> ZFPGACommander::sendPacket(zaf_packet_header_t *packet, uint32_t len, uint32_t overtime) {
lock_guard<recursive_mutex> lock(m_tx_lock);
zaf_packet_header_t *rxpacket = (zaf_packet_header_t *)&m_rxReceiptContext.receipt[0];
resetRxContext(packet->index);
if (serial_ch->isOpen() == false) {
throw zexception(ke_invalid_packet_format, "channel is not open");
}
if (m_raw_data_cb) {
m_raw_data_cb(kuart_raw_tx, (uint8_t *)packet, PACKET_LEN(packet));
}
#ifdef DEBUG
ZLOGI(TAG, "TX %s", hex2str((uint8_t *)packet, len).c_str());
#endif
serial_ch->send((uint8_t *)packet, len);
for (size_t i = 0; i < overtime; i++) {
{
lock_guard<mutex> lock(m_rxReceiptContext_lock);
if (m_rxReceiptContext.receiptIsReady) {
break;
}
}
this_thread::sleep_for(chrono::milliseconds(1));
}
if (m_rxReceiptContext.receiptIsReady) {
if (rxpacket->data[0] != 0) {
throw zexception(rxpacket->data[0], zaf_ecode_to_string((zaf_error_code_t)rxpacket->data[0]));
} else {
shared_ptr<Receipt> receipt;
receipt.reset(new Receipt(m_rxReceiptContext.receipt, m_rxReceiptContext.receiptLen));
return receipt;
}
} else {
}
throw zexception(ke_overtime, "overtime");
}
void ZFPGACommander::writeReg(uint32_t regadd, uint32_t regvalue) {
uint32_t regbackvalue;
writeReg(regadd, regvalue, regbackvalue, 50);
}
void ZFPGACommander::writeReg(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms) {
lock_guard<recursive_mutex> lock(m_tx_lock);
Reginfo *reg = GetRegInfo(regadd);
if (reg->flag & kreg_flag_force_write) {
_writeReg(regadd, regvalue, regbackvalue, overtime_ms);
} else if (reg->dirty) {
_writeReg(regadd, regvalue, regbackvalue, overtime_ms);
} else if (reg->regshadow != regvalue) {
_writeReg(regadd, regvalue, regbackvalue, overtime_ms);
} else {
regbackvalue = reg->regshadow;
}
reg->dirty = false;
reg->regshadow = regvalue;
return;
}
void ZFPGACommander::readReg(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms) {
lock_guard<recursive_mutex> lock(m_tx_lock);
Reginfo *reg = GetRegInfo(regadd);
if ((reg->flag & kreg_flag_force_read)) {
_readReg(regadd, regvalue, overtime_ms);
} else if (reg->dirty) {
_readReg(regadd, regvalue, overtime_ms);
} else {
regvalue = reg->regshadow;
}
reg->dirty = false;
reg->regshadow = regvalue;
}
void ZFPGACommander::_writeReg(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms) {
//
uint8_t txdata[128] = {0};
zaf_packet_header_t *txpacket = (zaf_packet_header_t *)txdata;
zaf_packet_header_t *rxpacket = (zaf_packet_header_t *)&m_rxReceiptContext.receipt[0];
txpacket->packet_header = PACKET_HEADER;
txpacket->packet_type = kzaf_packet_type_cmd;
txpacket->index = ++txindex;
txpacket->cmd = kzaf_cmd_reg_write;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = regvalue;
uint32_t txpacklen = PACKET_LEN(txpacket);
uint8_t checksum = 0;
for (uint32_t i = 2; i < txpacklen - 3; i++) {
checksum += txdata[i];
}
txdata[txpacklen - 3] = checksum;
txdata[txpacklen - 2] = PACKET_TAIL & 0xFF;
txdata[txpacklen - 1] = (PACKET_TAIL >> 8) & 0xFF;
sendPacket(txpacket, txpacklen, overtime_ms);
regbackvalue = rxpacket->data[1];
}
void ZFPGACommander::_readReg(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms) {
uint8_t txdata[128] = {0};
zaf_packet_header_t *txpacket = (zaf_packet_header_t *)txdata;
zaf_packet_header_t *rxpacket = (zaf_packet_header_t *)&m_rxReceiptContext.receipt[0];
txpacket->packet_header = PACKET_HEADER;
txpacket->packet_type = kzaf_packet_type_cmd;
txpacket->index = ++txindex;
txpacket->cmd = kzaf_cmd_reg_read;
txpacket->ndata = 1;
txpacket->data[0] = regadd;
uint32_t txpacklen = PACKET_LEN(txpacket);
uint8_t checksum = 0;
for (uint32_t i = 2; i < txpacklen - 3; i++) {
checksum += txdata[i];
}
txdata[txpacklen - 3] = checksum;
txdata[txpacklen - 2] = PACKET_TAIL & 0xFF;
txdata[txpacklen - 1] = (PACKET_TAIL >> 8) & 0xFF;
sendPacket(txpacket, txpacklen, overtime_ms);
regvalue = rxpacket->data[1];
// ZLOGI(TAG, "RX packet");
// ZLOGI(TAG, " type :%d", rxpacket->packet_type);
// ZLOGI(TAG, " index :%d", rxpacket->index);
// ZLOGI(TAG, " cmd :%d", rxpacket->cmd);
// ZLOGI(TAG, " ndata :%d", rxpacket->ndata);
// for (uint32_t i = 0; i < rxpacket->ndata; i++) {
// ZLOGI(TAG, " data[%d]:%d", i, rxpacket->data[i]);
// }
// ZLOGI(TAG, "RX:%d", regvalue);
}
Reginfo *ZFPGACommander::GetRegInfo(uint32_t add) {
auto it = m_reginfoMap.find(add);
if (it != m_reginfoMap.end()) {
return &it->second;
}
m_reginfoMap.insert(make_pair(add, Reginfo()));
return &m_reginfoMap[add];
}
void ZFPGACommander::RegInfo_Reset() {
for (auto &it : m_reginfoMap) {
it.second.dirty = true;
}
}
void ZFPGACommander::readFPGAVersion(Version &version) {
uint32_t version32;
readReg(kreg_fpga_version, version32, 100);
version.main = VERSION_MAIN(version32);
version.sub = VERSION_SUB(version32);
version.fix = VERSION_FIX(version32);
}
void ZFPGACommander::readStm32Version(Version &version) {
uint32_t version32;
readReg(kreg_software_version, version32, 10);
version.main = VERSION_MAIN(version32);
version.sub = VERSION_SUB(version32);
version.fix = VERSION_FIX(version32);
}
bool ZFPGACommander::ping() {
try {
callcmd(kzaf_cmd_ping, 10);
} catch (const std::exception &e) {
return false;
}
return true;
}
void ZFPGACommander::callcmd(uint32_t cmd, uint32_t delayms) {
lock_guard<recursive_mutex> lock(m_tx_lock);
uint8_t txdata[128] = {0};
zaf_packet_header_t *txpacket = (zaf_packet_header_t *)txdata;
// zaf_packet_header_t *rxpacket = (zaf_packet_header_t *)&m_rxReceiptContext.receipt[0];
txpacket->packet_header = PACKET_HEADER;
txpacket->packet_type = kzaf_packet_type_cmd;
txpacket->index = ++txindex;
txpacket->cmd = cmd;
txpacket->ndata = 0;
uint32_t txpacklen = PACKET_LEN(txpacket);
uint8_t checksum = 0;
for (uint32_t i = 2; i < txpacklen - 3; i++) {
checksum += txdata[i];
}
txdata[txpacklen - 3] = checksum;
txdata[txpacklen - 2] = PACKET_TAIL & 0xFF;
txdata[txpacklen - 1] = (PACKET_TAIL >> 8) & 0xFF;
sendPacket(txpacket, txpacklen, delayms);
}
void ZFPGACommander::factoryReset() { callcmd(kzaf_cmd_factory_reset, 1500); }
void ZFPGACommander::reboot() { callcmd(kzaf_cmd_reboot, 100); }
void ZFPGACommander::storageConfigs() { callcmd(kzaf_cmd_storage_cfg, 1500); }