You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1057 lines
44 KiB

1 year ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
2 years ago
2 years ago
1 year ago
2 years ago
1 year ago
2 years ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
  1. #include "xsync_v2.hpp"
  2. #include <string.h>
  3. #include <map>
  4. #include "../src/logger.hpp"
  5. #include "xsync_errcode.hpp"
  6. #include "xsync_regs.hpp"
  7. #include "xsync_utils.hpp"
  8. #include "xsync_v2_sig_type.hpp"
  9. #define TAG "XSYNC"
  10. using namespace xsync;
  11. using namespace std;
  12. /**
  13. * @brief XSYNC协议端口
  14. */
  15. #define IFLYTOP_XSYNC_SERVICE_XSYNC_PORT 19900 // xsync端端口
  16. #define IFLYTOP_XSYNC_SERVICE_PC_PORT 19901 // pc 端端口
  17. #define IFLYTOP_XSYNC_TIMECODE_REPORT_XSYNC_PORT 19902 // xsync端端口
  18. #define IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT 19903 // pc端端口
  19. #define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_XSYNC_PORT 13013 // xsync端端口
  20. #define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT 13014 // pc端端口
  21. #define DO_XSYNC(exptr) \
  22. { \
  23. xs_error_code_t ecode = exptr; \
  24. if (ecode != kxs_ec_success) return ecode; \
  25. }
  26. #define REG_WRITE(reg, value) \
  27. { \
  28. DO_XSYNC(reg_write(reg, value, 10)); \
  29. return kxs_ec_success; \
  30. }
  31. #define REG_READ(reg, value) \
  32. { \
  33. uint32_t readbak = 0; \
  34. DO_XSYNC(reg_read(reg, readbak, 10)); \
  35. value = (decltype(value))readbak; \
  36. return kxs_ec_success; \
  37. }
  38. I_XSUDPFactory *g_xsync_udp_factory = nullptr;
  39. class RxContext {
  40. public:
  41. std::recursive_mutex lock_;
  42. uint8_t rxpacket[1024] = {0};
  43. int32_t rxpacket_length = 0;
  44. bool m_isready = false;
  45. bool m_isWait = false;
  46. int32_t m_expectIndex = 0;
  47. void setRxPacket(uint8_t *data, int32_t length) {
  48. lock_guard<recursive_mutex> lock(lock_);
  49. memcpy(rxpacket, data, length);
  50. rxpacket_length = length;
  51. m_isready = true;
  52. }
  53. void clear() {
  54. lock_guard<recursive_mutex> lock(lock_);
  55. memset(rxpacket, 0, sizeof(rxpacket));
  56. rxpacket_length = 0;
  57. m_isready = false;
  58. m_isWait = false;
  59. m_expectIndex = 0;
  60. }
  61. void setWait(bool wait, int32_t waitIndex) {
  62. lock_guard<recursive_mutex> lock(lock_);
  63. m_isWait = wait;
  64. m_expectIndex = waitIndex;
  65. }
  66. bool isReady() { return m_isready; }
  67. bool isWait() { return m_isWait; }
  68. int32_t getExpectIndex() { return m_expectIndex; }
  69. uint8_t *data() { return rxpacket; }
  70. size_t size() { return rxpacket_length; }
  71. };
  72. class Xsync : public IXsync {
  73. private:
  74. /* data */
  75. shared_ptr<I_XSUDP> m_xsync_reg_udp = nullptr;
  76. shared_ptr<I_XSUDP> m_xsync_timecode_udp_listener = nullptr;
  77. shared_ptr<I_XSUDP> m_xsync_camera_sync_udp_listener = nullptr;
  78. string m_xsync_ip;
  79. bool m_is_connected = false;
  80. xsync_on_camera_sync_msg_t m_on_camera_sync_msg_cb = nullptr;
  81. xsync_on_timecode_msg_t m_on_timecode_msg_cb = nullptr;
  82. xsync_on_record_sig_change_msg_t m_on_record_sig_change_msg_cb = nullptr;
  83. xsync_on_connect_state_change_t m_on_connect_state_change_cb = nullptr;
  84. int txpacket_index = 0;
  85. uint8_t m_xync_cmd_rxdata_cache[2560];
  86. std::recursive_mutex lock_;
  87. std::recursive_mutex connectStatelock_;
  88. // <thread>
  89. unique_ptr<thread> device_state_monitor_thread;
  90. bool destoryflag = false;
  91. int64_t m_last_receive_packet_tp = 0;
  92. RxContext rxContext;
  93. private:
  94. void _setNetworkState(bool connected, string ip) {
  95. lock_guard<recursive_mutex> lock(connectStatelock_);
  96. m_is_connected = connected;
  97. m_xsync_ip = ip;
  98. if (m_on_connect_state_change_cb) m_on_connect_state_change_cb(m_is_connected, m_xsync_ip);
  99. }
  100. string _getXsyncIp() {
  101. lock_guard<recursive_mutex> lock(connectStatelock_);
  102. return m_xsync_ip;
  103. }
  104. bool _getConnectState() {
  105. lock_guard<recursive_mutex> lock(connectStatelock_);
  106. return m_is_connected;
  107. }
  108. public:
  109. static Xsync &Ins();
  110. Xsync(/* args */) {}
  111. virtual ~Xsync() {
  112. destoryflag = true;
  113. if (device_state_monitor_thread) device_state_monitor_thread->join();
  114. if (m_xsync_timecode_udp_listener) m_xsync_timecode_udp_listener->stopReceive();
  115. if (m_xsync_camera_sync_udp_listener) m_xsync_camera_sync_udp_listener->stopReceive();
  116. if (m_xsync_reg_udp) m_xsync_reg_udp->stopReceive();
  117. }
  118. virtual xs_error_code_t initialize(xsync_config_t *config) override {
  119. lock_guard<recursive_mutex> lock(lock_);
  120. xs_error_code_t ecode = kxs_ec_success;
  121. shared_ptr<I_XSUDP> xsync_reg_udp;
  122. shared_ptr<I_XSUDP> xsync_timecode_udp_listener;
  123. shared_ptr<I_XSUDP> xsync_camera_sync_udp_listener;
  124. // 寄存器读写UDP
  125. xsync_reg_udp = g_xsync_udp_factory->createXSUDP();
  126. ecode = xsync_reg_udp->initialize("0.0.0.0", IFLYTOP_XSYNC_SERVICE_PC_PORT);
  127. xsync_reg_udp->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) {
  128. iflytop_xsync_packet_header_t *rx_data = (iflytop_xsync_packet_header_t *)data;
  129. if (!rxContext.isWait()) {
  130. return;
  131. }
  132. if (rx_data->index != rxContext.getExpectIndex()) {
  133. return;
  134. }
  135. rxContext.setRxPacket(data, length);
  136. });
  137. if (ecode != kxs_ec_success) goto err;
  138. // TIMECODE上报消息接收UDP
  139. xsync_timecode_udp_listener = g_xsync_udp_factory->createXSUDP();
  140. ecode = xsync_timecode_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT);
  141. if (ecode != kxs_ec_success) goto err;
  142. ecode = xsync_timecode_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) {
  143. iflytop_xsync_event_report_packet_t *packet = (iflytop_xsync_event_report_packet_t *)data;
  144. if (!_getConnectState()) {
  145. m_last_receive_packet_tp = Xsync_GetTicket();
  146. _setNetworkState(true, from.ip);
  147. }
  148. if (_getConnectState() && _getXsyncIp() != from.ip) {
  149. return;
  150. }
  151. m_last_receive_packet_tp = Xsync_GetTicket();
  152. if (packet->eventid == ktimecode_report_event) {
  153. Timecode64_t tc64;
  154. tc64.tc0 = packet->data[0];
  155. tc64.tc1 = packet->data[1];
  156. tc64.subframe = packet->data[2];
  157. XsyncTimecode_t timecode = timecode64ToXsyncTimeCode(tc64);
  158. if (m_on_timecode_msg_cb) m_on_timecode_msg_cb(&timecode);
  159. } else if (packet->eventid == kxsync_work_state_report_event) {
  160. // 信号发生器状态改变
  161. Timecode64_t tc64 = {0};
  162. tc64.tc0 = packet->data[1];
  163. tc64.tc1 = packet->data[2]; // TODO:需要锁存时码的子帧
  164. XsyncTimecode_t timecode = timecode64ToXsyncTimeCode(tc64);
  165. if (m_on_record_sig_change_msg_cb) m_on_record_sig_change_msg_cb(packet->data[0], &timecode);
  166. }
  167. });
  168. if (ecode != kxs_ec_success) goto err;
  169. #if 1
  170. // 相机同步包
  171. if (config->listenCameraSyncPacket) {
  172. xsync_camera_sync_udp_listener = g_xsync_udp_factory->createXSUDP();
  173. ecode = xsync_camera_sync_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT);
  174. if (ecode != kxs_ec_success) goto err;
  175. ecode = xsync_camera_sync_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { //
  176. parseCameraSyncMsgAndReport(from, data, length);
  177. });
  178. if (ecode != kxs_ec_success) goto err;
  179. }
  180. #endif
  181. m_xsync_timecode_udp_listener = xsync_timecode_udp_listener;
  182. m_xsync_camera_sync_udp_listener = xsync_camera_sync_udp_listener;
  183. m_xsync_reg_udp = xsync_reg_udp;
  184. // 设备枚举线程
  185. device_state_monitor_thread.reset(new thread([this]() {
  186. while (!destoryflag) {
  187. int32_t has_not_receive_packet_time_s = (Xsync_GetTicket() - m_last_receive_packet_tp) / 1000 / 1000;
  188. // ZLOGI(TAG, "%lld ", has_not_receive_packet_time_s);
  189. if (m_is_connected && (has_not_receive_packet_time_s) > 500) {
  190. _setNetworkState(false, "");
  191. }
  192. this_thread::sleep_for(chrono::seconds(1));
  193. }
  194. return;
  195. }));
  196. return kxs_ec_success;
  197. err:
  198. if (xsync_timecode_udp_listener) xsync_timecode_udp_listener->stopReceive();
  199. if (xsync_camera_sync_udp_listener) xsync_camera_sync_udp_listener->stopReceive();
  200. return ecode;
  201. }
  202. virtual bool ping() override {
  203. uint32_t readbak;
  204. xs_error_code_t ecode = reg_read(reg::kproduct_type_id, readbak, 10);
  205. if (ecode != kxs_ec_success) {
  206. return false;
  207. }
  208. return true;
  209. }
  210. virtual bool getConnectState() override { return _getConnectState(); }
  211. virtual string getDeviceIp() override { return _getXsyncIp(); }
  212. virtual xs_error_code_t NetworkConfig_setMode(NetworkMode_t mode) override { REG_WRITE(reg::kstm32_obtaining_ip_mode, mode); }
  213. virtual xs_error_code_t NetworkConfig_getMode(NetworkMode_t &mode) override {
  214. uint32_t mode_u32;
  215. DO_XSYNC(reg_read(reg::kstm32_obtaining_ip_mode, mode_u32, 10));
  216. mode = (NetworkMode_t)mode_u32;
  217. return kxs_ec_success;
  218. }
  219. virtual xs_error_code_t NetworkConfigStaticIpMode_setIp(string ip) override {
  220. xs_error_code_t ecode;
  221. bool suc = false;
  222. uint32_t ip32 = (uint32_t)ipToUint32(ip.c_str(), suc);
  223. if (!suc) return kxs_ec_param_error;
  224. uint32_t readbak = 0;
  225. ecode = reg_write(reg::kstm32_ip, ip32, readbak);
  226. if (ecode != kxs_ec_success) return ecode;
  227. return kxs_ec_success;
  228. }
  229. virtual xs_error_code_t NetworkConfigStaticIpMode_setMask(string mask) override {
  230. xs_error_code_t ecode;
  231. bool suc = false;
  232. uint32_t mask32 = (uint32_t)ipToUint32(mask.c_str(), suc);
  233. if (!suc) return kxs_ec_param_error;
  234. uint32_t readbak = 0;
  235. ecode = reg_write(reg::kstm32_netmask, mask32, readbak);
  236. if (ecode != kxs_ec_success) return ecode;
  237. return kxs_ec_success;
  238. }
  239. virtual xs_error_code_t NetworkConfigStaticIpMode_setGateway(string gateway) override {
  240. xs_error_code_t ecode;
  241. bool suc = false;
  242. uint32_t gateway32 = (uint32_t)ipToUint32(gateway.c_str(), suc);
  243. if (!suc) return kxs_ec_param_error;
  244. uint32_t readbak = 0;
  245. ecode = reg_write(reg::kstm32_gw, gateway32, readbak);
  246. if (ecode != kxs_ec_success) return ecode;
  247. return kxs_ec_success;
  248. }
  249. virtual xs_error_code_t NetworkConfigStaticIpMode_getIp(string &ip) override {
  250. uint32_t ip32;
  251. DO_XSYNC(reg_read(reg::kstm32_ip, ip32, 10));
  252. ip = uint32ToIp(ip32);
  253. return kxs_ec_success;
  254. }
  255. virtual xs_error_code_t NetworkConfigStaticIpMode_getMask(string &mask) override {
  256. uint32_t mask32;
  257. DO_XSYNC(reg_read(reg::kstm32_netmask, mask32, 10));
  258. mask = uint32ToIp(mask32);
  259. return kxs_ec_success;
  260. }
  261. virtual xs_error_code_t NetworkConfigStaticIpMode_getGateway(string &gateway) override {
  262. uint32_t gateway32;
  263. DO_XSYNC(reg_read(reg::kstm32_gw, gateway32, 10));
  264. gateway = uint32ToIp(gateway32);
  265. return kxs_ec_success;
  266. }
  267. virtual xs_error_code_t readSDKVersion(version_t &version) override {
  268. version.main = PC_VERSION >> 16;
  269. version.sub = (PC_VERSION >> 8) & 0xff;
  270. version.fix = PC_VERSION & 0xff;
  271. return kxs_ec_success;
  272. }
  273. virtual xs_error_code_t readARMSoftwareVersion(version_t &version) override {
  274. uint32_t version_u32;
  275. DO_XSYNC(reg_read(reg::ksoftware_version, version_u32, 10));
  276. version.main = version_u32 >> 16;
  277. version.sub = (version_u32 >> 8) & 0xff;
  278. version.fix = version_u32 & 0xff;
  279. return kxs_ec_success;
  280. }
  281. virtual xs_error_code_t readFPGASoftwareVersion(version_t &version) override {
  282. uint32_t version_u32;
  283. DO_XSYNC(reg_read(reg::kfpga_info_reg0, version_u32, 10));
  284. version.main = version_u32 >> 16;
  285. version.sub = (version_u32 >> 8) & 0xff;
  286. version.fix = version_u32 & 0xff;
  287. return kxs_ec_success;
  288. }
  289. virtual void registerOnTimecodeMsgCallback(xsync_on_timecode_msg_t cb) override { m_on_timecode_msg_cb = cb; }
  290. virtual void registerOnCameraSyncMsgCallback(xsync_on_camera_sync_msg_t cb) override { m_on_camera_sync_msg_cb = cb; }
  291. virtual void registerOnRecordSigChangeMsgCallback(xsync_on_record_sig_change_msg_t cb) override { m_on_record_sig_change_msg_cb = cb; }
  292. virtual void registerOnConnectStateChangeCallback(xsync_on_connect_state_change_t cb) override { m_on_connect_state_change_cb = cb; };
  293. virtual xs_error_code_t generatorNewMac() override;
  294. virtual xs_error_code_t factoryReset() override;
  295. virtual xs_error_code_t reboot() override;
  296. virtual xs_error_code_t readSn(string &sn) override;
  297. virtual xs_error_code_t readMac(string &mac) override;
  298. public:
  299. virtual xs_error_code_t reg_write(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms = 100) override;
  300. virtual xs_error_code_t reg_read(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms = 100) override;
  301. public:
  302. /*******************************************************************************
  303. * TIMECODE *
  304. *******************************************************************************/
  305. virtual xs_error_code_t ExternalTimecode_readCode(XsyncTimecode_t &timecode) override { //
  306. return readtimecode(reg::external_timecode_timecode0, reg::external_timecode_timecode1, timecode);
  307. }
  308. virtual xs_error_code_t ExternalTimecode_readSrc(InputInterface_t &timecode_select) override {
  309. uint32_t readbak = 0;
  310. DO_XSYNC(reg_read(reg::external_timecode_timecode_sig_selt, readbak, 10));
  311. if (readbak == 1) {
  312. timecode_select = INPUT_IF_TIMECODE_BNC;
  313. } else if (readbak == 2) {
  314. timecode_select = INPUT_IF_TIMECODE_HEADPHONE;
  315. } else if (readbak == 0) {
  316. timecode_select = INPUT_IF_OFF;
  317. } else {
  318. timecode_select = INPUT_IF_OFF;
  319. }
  320. return kxs_ec_success;
  321. }
  322. virtual xs_error_code_t ExternalTimecode_readFreq(float &freq) override { //
  323. return readfreq(reg::external_timecode_freq, freq);
  324. }
  325. virtual xs_error_code_t ExternalTimecode_readFormat(TimecodeFormat_t &format) override { //
  326. return readTimecodeFormat(reg::external_timecode_freq, reg::external_timecode_timecode0, reg::external_timecode_timecode1, format);
  327. }
  328. /*******************************************************************************
  329. * INTERNAL *
  330. *******************************************************************************/
  331. virtual xs_error_code_t InternalSigSrouce_start() override { //
  332. DO_XSYNC(reg_write(reg::internal_sig_en_contrler_en, 0x7, 10));
  333. return kxs_ec_success;
  334. }
  335. virtual xs_error_code_t InternalSigSrouce_stop() override { //
  336. DO_XSYNC(reg_write(reg::internal_sig_en_contrler_en, 0x0, 10));
  337. return kxs_ec_success;
  338. }
  339. virtual xs_error_code_t InternalSigSrouce_readState(bool &en) override {
  340. uint32_t en_u32;
  341. DO_XSYNC(reg_read(reg::internal_sig_en_contrler_en, en_u32, 10));
  342. en = en_u32;
  343. return kxs_ec_success;
  344. }
  345. virtual xs_error_code_t InternalTimecode_setFormat(TimecodeFormat_t format) override { REG_WRITE(reg::internal_timecode_format, format); }
  346. virtual xs_error_code_t InternalTimecode_getFormat(TimecodeFormat_t &format) override { REG_READ(reg::internal_timecode_format, format); }
  347. virtual xs_error_code_t InternalTimecode_setCode(XsyncTimecode_t timecode) override {
  348. DO_XSYNC(reg_write(reg::internal_timecode_en, 0));
  349. DO_XSYNC(writetimecode(reg::internal_timecode_data0, reg::internal_timecode_data1, timecode));
  350. DO_XSYNC(reg_write(reg::internal_timecode_en, 1));
  351. return kxs_ec_success;
  352. }
  353. virtual xs_error_code_t InternalTimecode_getCode(XsyncTimecode_t &timecode) override { return readtimecode(reg::internal_timecode_data0, reg::internal_timecode_data1, timecode); }
  354. virtual xs_error_code_t InternalTimecode_readFreq(float &freq) override { return readfreq(reg::internal_timecode_detect_freq, freq); };
  355. virtual xs_error_code_t InternalGenlock_setFormat(GenlockFormat_t format) override { return reg_write(reg::internal_genlock_format, format); }
  356. virtual xs_error_code_t InternalGenlock_getFormat(GenlockFormat_t &format) override { REG_READ(reg::internal_genlock_format, format); }
  357. virtual xs_error_code_t InternalGenlock_readFreq(float &freq) override { return readfreq(reg::internal_genlock_freq, freq); }
  358. virtual xs_error_code_t InternalClock_setFreq(float freq) override {
  359. double T = 1.0 / freq;
  360. double T_ns = T * 1000 * 1000 * 1000;
  361. double cnt = T_ns / 100 + 0.5; // 10MHZ <=> 100ns
  362. uint32_t cnt_u32 = uint32_t(cnt);
  363. return reg_write(reg::internal_clock_freq, cnt_u32);
  364. return kxs_ec_success;
  365. }
  366. virtual xs_error_code_t InternalClock_getFreq(float &freq) override { return readfreq(reg::internal_clock_freq, freq); }
  367. virtual xs_error_code_t InternalClock_readOutFreq(float &freq) override { return readfreq(reg::internal_clock_freq_detect, freq); }
  368. virtual xs_error_code_t SysTimecode_setSource(uint32_t sig) override { REG_WRITE(reg::sys_timecode_select, sig); }
  369. virtual xs_error_code_t SysTimecode_getSource(uint32_t &sig) override { REG_READ(reg::sys_timecode_select, sig); }
  370. virtual xs_error_code_t SysTimecode_readFormat(TimecodeFormat_t &format) override { return readTimecodeFormat(reg::sys_timecode_freq_detect, reg::sys_timecode_data0, reg::sys_timecode_data1, format); }
  371. virtual xs_error_code_t SysTimecode_readFreq(float &freq) override { return readfreq(reg::sys_timecode_freq_detect, freq); }
  372. virtual xs_error_code_t SysTimecode_readCode(XsyncTimecode_t &timecode) override { return readtimecode(reg::sys_timecode_data0, reg::sys_timecode_data1, timecode); }
  373. virtual xs_error_code_t RecordSigGenerator_setContrlMode(ControlMode_t mode) override {
  374. if (mode != CONTROLMODE_MANUAL_TRIGGER && mode != CONTROLMODE_TIMECODE_TRIGGER && mode != CONTROLMODE_EXTERNALTTL_TRIGGER && mode != CONTROLMODE_EXTERNALTTL_EDGE_TRIGGER) {
  375. return kxs_ec_param_error;
  376. }
  377. return reg_write(reg::record_sig_gen_ctrl_control_mode, mode);
  378. }
  379. virtual xs_error_code_t RecordSigGenerator_getContrlMode(ControlMode_t &mode) override { return _reg_read(reg::record_sig_gen_ctrl_control_mode, mode); }
  380. virtual xs_error_code_t RecordSigGenerator_manualStart() override { return reg_write(reg::record_sig_gen_manual_ctrl, 1, 10); }
  381. virtual xs_error_code_t RecordSigGenerator_manualStop() override { return reg_write(reg::record_sig_gen_manual_ctrl, 0, 10); }
  382. virtual xs_error_code_t RecordSigGenerator_setAutoStartTimecode(XsyncTimecode_t timecode) override { return writetimecode(reg::record_sig_gen_timecode_start0, reg::record_sig_gen_timecode_start1, timecode); }
  383. virtual xs_error_code_t RecordSigGenerator_setAutoStopTimecode(XsyncTimecode_t timecode) override { return writetimecode(reg::record_sig_gen_timecode_stop0, reg::record_sig_gen_timecode_stop1, timecode); }
  384. virtual xs_error_code_t RecordSigGenerator_getAutoStartTimecode(XsyncTimecode_t &timecode) override { return readtimecode(reg::record_sig_gen_timecode_start0, reg::record_sig_gen_timecode_start1, timecode); }
  385. virtual xs_error_code_t RecordSigGenerator_getAutoStopTimecode(XsyncTimecode_t &timecode) override { return readtimecode(reg::record_sig_gen_timecode_stop0, reg::record_sig_gen_timecode_stop1, timecode); }
  386. virtual xs_error_code_t RecordSigGenerator_setExternalTTLTriggerSrc(InputInterface_t ttlPortNum) override {
  387. if (ttlPortNum != INPUT_IF_TTL1 && ttlPortNum != INPUT_IF_TTL2 && ttlPortNum != INPUT_IF_TTL3 && ttlPortNum != INPUT_IF_TTL4) {
  388. return kxs_ec_param_error;
  389. }
  390. return reg_write(reg::record_sig_gen_ttlin_trigger_sig_source, ttlPortNum);
  391. }
  392. virtual xs_error_code_t RecordSigGenerator_getExternalTTLTriggerSrc(InputInterface_t &ttlPortNum) override { return _reg_read(reg::record_sig_gen_ttlin_trigger_sig_source, ttlPortNum); }
  393. virtual xs_error_code_t RecordSigGenerator_setExternalTTLTriggerPolarity(uint32_t polarity) override { return reg_write(reg::record_sig_gen_ttlin_trigger_level, polarity); }
  394. virtual xs_error_code_t RecordSigGenerator_getExternalTTLTriggerPolarity(uint32_t &polarity) override { return _reg_read(reg::record_sig_gen_ttlin_trigger_level, polarity); }
  395. virtual xs_error_code_t RecordSigGenerator_setTimecodeCtrlFlag(uint32_t autoStart, uint32_t autoStop) override {
  396. uint32_t flag = (autoStart & 0x01) | ((autoStop & 0x01) << 1);
  397. return reg_write(reg::record_sig_gen_timecode_control_flag, flag);
  398. }
  399. virtual xs_error_code_t RecordSigGenerator_getTimecodeCtrlFlag(uint32_t &autoStart, uint32_t &autoStop) override {
  400. uint32_t flag = 0;
  401. auto ret = reg_read(reg::record_sig_gen_timecode_control_flag, flag);
  402. autoStart = flag & 0x01;
  403. autoStop = (flag >> 1) & 0x01;
  404. return ret;
  405. }
  406. virtual xs_error_code_t RecordSigGenerator_getRecordState(uint32_t &state) override { return _reg_read(reg::record_sig_gen_record_state, state); }
  407. virtual xs_error_code_t RecordSigGenerator_readTimecodeSnapshot(XsyncTimecode_t &timecode) override { return readtimecode(reg::record_sig_gen_timecode_snapshot0, reg::record_sig_gen_timecode_snapshot1, timecode); }
  408. virtual xs_error_code_t RecordSigGenerator_setTriggerEdge(TriggerEdge_t edge) override { return reg_write(reg::record_sig_gen_trigger_edge_select, edge); }
  409. virtual xs_error_code_t RecordSigGenerator_getTriggerEdge(TriggerEdge_t &edge) override { return _reg_read(reg::record_sig_gen_trigger_edge_select, edge); }
  410. virtual xs_error_code_t TTLOutputModule_setSrcSigType(int index, SignalType_t source) override {
  411. if (index < 1 || index > 4) return kxs_ec_param_error;
  412. if (source == SIGNAL_LOGIC0 || //
  413. source == SIGNAL_LOGIC1 || //
  414. source == SIGNAL_BUSINESS_RECORD_SIG) {
  415. DO_XSYNC(reg_write(reg::kreg_ttlout1_signal_process_mode + (index - 1) * 16, 3, 10)); // 转发模式
  416. } else {
  417. ZLOGI(TAG, "TTLOutputModule_setSrcSigType %d %d", index, source);
  418. DO_XSYNC(reg_write(reg::kreg_ttlout1_signal_process_mode + (index - 1) * 16, 2, 10)); // 分频倍频模式
  419. }
  420. REG_WRITE(reg::kreg_ttlout1_input_signal_select + (index - 1) * 16, source);
  421. return kxs_ec_success;
  422. }
  423. virtual xs_error_code_t TTLOutputModule_getSrcSigType(int index, SignalType_t &source) override {
  424. if (index < 1 || index > 4) return kxs_ec_param_error;
  425. uint32_t source_u32;
  426. DO_XSYNC(reg_read(reg::kreg_ttlout1_input_signal_select + (index - 1) * 16, source_u32, 10));
  427. source = (SignalType_t)source_u32;
  428. return kxs_ec_success;
  429. }
  430. virtual xs_error_code_t TTLOutputModule_setFreqDivision(int index, uint32_t div) override {
  431. if (index < 1 || index > 4) return kxs_ec_param_error;
  432. REG_WRITE(reg::kreg_ttlout1_pllout_freq_division_ctrl + (index - 1) * 16, div);
  433. }
  434. virtual xs_error_code_t TTLOutputModule_getFreqDivision(int index, uint32_t &div) override {
  435. if (index < 1 || index > 4) return kxs_ec_param_error;
  436. REG_READ(reg::kreg_ttlout1_pllout_freq_division_ctrl + (index - 1) * 16, div);
  437. }
  438. virtual xs_error_code_t TTLOutputModule_setFreqMultiplication(int index, uint32_t multi) override {
  439. if (index < 1 || index > 4) return kxs_ec_param_error;
  440. REG_WRITE(reg::kreg_ttlout1_pllout_freq_multiplication_ctrl + (index - 1) * 16, multi);
  441. }
  442. virtual xs_error_code_t TTLOutputModule_getFreqMultiplication(int index, uint32_t &multi) override {
  443. if (index < 1 || index > 4) return kxs_ec_param_error;
  444. REG_READ(reg::kreg_ttlout1_pllout_freq_multiplication_ctrl + (index - 1) * 16, multi);
  445. }
  446. virtual xs_error_code_t TTLOutputModule_readInFreq(int index, float &freq) override {
  447. if (index < 1 || index > 4) return kxs_ec_param_error;
  448. return readfreq(reg::kreg_ttlout1_sig_in_freq_detect + (index - 1) * 16, freq);
  449. }
  450. virtual xs_error_code_t TTLOutputModule_readOutFreq(int index, float &freq) override {
  451. if (index < 1 || index > 4) return kxs_ec_param_error;
  452. return readfreq(reg::kreg_ttlout1_sig_out_freq_detect + (index - 1) * 16, freq);
  453. }
  454. virtual xs_error_code_t TTLOutputModule_setPolarity(int index, uint32_t polarity) override {
  455. if (index < 1 || index > 4) return kxs_ec_param_error;
  456. DO_XSYNC(reg_write(reg::kreg_ttlout1_pllout_polarity_ctrl + (index - 1) * 16, polarity, 10));
  457. DO_XSYNC(reg_write(reg::kreg_ttlout1_forward_mode_polarity_ctrl + (index - 1) * 16, polarity, 10));
  458. }
  459. virtual xs_error_code_t TTLOutputModule_getPolarity(int index, uint32_t &polarity) override {
  460. if (index < 1 || index > 4) return kxs_ec_param_error;
  461. REG_READ(reg::kreg_ttlout1_pllout_polarity_ctrl + (index - 1) * 16, polarity);
  462. }
  463. virtual xs_error_code_t TTLOutputModule_setTriggerEdge(int index, TriggerEdge_t edge) override {
  464. if (index < 1 || index > 4) return kxs_ec_param_error;
  465. REG_WRITE(reg::kreg_ttlout1_pllout_trigger_edge_select + (index - 1) * 16, edge);
  466. }
  467. virtual xs_error_code_t TTLOutputModule_getTriggerEdge(int index, TriggerEdge_t &edge) override {
  468. if (index < 1 || index > 4) return kxs_ec_param_error;
  469. REG_READ(reg::kreg_ttlout1_pllout_trigger_edge_select + (index - 1) * 16, edge);
  470. }
  471. virtual xs_error_code_t TTLOutputModule_setPluseWidth(int index, uint32_t us) override {
  472. if (index < 1 || index > 4) return kxs_ec_param_error;
  473. REG_WRITE(reg::kreg_ttlout1_pluse_width_ctrl + (index - 1) * 16, us);
  474. }
  475. virtual xs_error_code_t TTLOutputModule_getPluseWidth(int index, uint32_t &us) override {
  476. if (index < 1 || index > 4) return kxs_ec_param_error;
  477. REG_READ(reg::kreg_ttlout1_pluse_width_ctrl + (index - 1) * 16, us);
  478. }
  479. virtual xs_error_code_t TTLOutputModule_setOffsetTime(int index, uint32_t us) override {
  480. if (index < 1 || index > 4) return kxs_ec_param_error;
  481. REG_WRITE(reg::kreg_ttlout1_pluse_offset_ctrl + (index - 1) * 16, us);
  482. }
  483. virtual xs_error_code_t TTLOutputModule_getOffsetTime(int index, uint32_t &us) override {
  484. if (index < 1 || index > 4) return kxs_ec_param_error;
  485. REG_READ(reg::kreg_ttlout1_pluse_offset_ctrl + (index - 1) * 16, us);
  486. }
  487. virtual xs_error_code_t Utils_readSigFreq(SignalType_t sig, float &freq) override {
  488. if (sig == SIGNAL_LOGIC0) {
  489. freq = 0;
  490. } else if (sig == SIGNAL_LOGIC1) {
  491. freq = 0;
  492. } else if (sig == SIGNAL_TTLIN1) {
  493. return TTLInputModule1_detectFreq(freq);
  494. } else if (sig == SIGNAL_TTLIN2) {
  495. return TTLInputModule2_detectFreq(freq);
  496. } else if (sig == SIGNAL_TTLIN3) {
  497. return TTLInputModule3_detectFreq(freq);
  498. } else if (sig == SIGNAL_TTLIN4) {
  499. return TTLInputModule4_detectFreq(freq);
  500. } else if (sig == SIGNAL_EXT_GENLOCK_FREQ) {
  501. return ExternalGenlock_detectFreq(freq);
  502. } else if (sig == SIGNAL_EXT_TIMECODE_FREQ) {
  503. return ExternalTimecode_readFreq(freq);
  504. } else if (sig == SIGNAL_INTERNAL_TIMECODE_FREQ) {
  505. return InternalTimecode_readFreq(freq);
  506. } else if (sig == SIGNAL_INTERNAL_GENLOCK_FREQ) {
  507. return InternalGenlock_readFreq(freq);
  508. } else if (sig == SIGNAL_INTERNAL_CLOCK_SIG) {
  509. return InternalClock_readOutFreq(freq);
  510. } else if (sig == SIGNAL_SYS_CLK_OUTPUT) {
  511. return SysClock_readOutSigFreq(freq);
  512. } else if (sig == SIGNAL_SYS_GENLOCK_OUTPUT) {
  513. return SysGenlock_readFreq(freq);
  514. } else if (sig == SIGNAL_SYS_TIMECODE_FREQ_OUTPUT) {
  515. return SysTimecode_readFreq(freq);
  516. } else if (sig == SIGNAL_BUSINESS_RECORD_SIG) {
  517. return kxs_ec_param_error;
  518. } else if (sig == SIGNAL_BUSINESS_RECORD_EXPOSURE_SIG) {
  519. return kxs_ec_param_error;
  520. }
  521. return kxs_ec_param_error;
  522. }
  523. virtual xs_error_code_t TTLInputModule1_detectFreq(float &freq) override { return readfreq(reg::k_ttlin1_freq_detector_reg, freq); }
  524. virtual xs_error_code_t TTLInputModule2_detectFreq(float &freq) override { return readfreq(reg::k_ttlin2_freq_detector_reg, freq); }
  525. virtual xs_error_code_t TTLInputModule3_detectFreq(float &freq) override { return readfreq(reg::k_ttlin3_freq_detector_reg, freq); }
  526. virtual xs_error_code_t TTLInputModule4_detectFreq(float &freq) override { return readfreq(reg::k_ttlin4_freq_detector_reg, freq); }
  527. virtual xs_error_code_t TimecodeOutputModule_setBncOutputLevel(int level) { REG_WRITE(reg::timecode_output_bnc_outut_level_select, level); }
  528. virtual xs_error_code_t TimecodeOutputModule_getBncOutputLevel(int &level) { REG_READ(reg::timecode_output_bnc_outut_level_select, level); }
  529. virtual xs_error_code_t TimecodeOutputModule_setHeadphoneOutputLevel(int level) { REG_WRITE(reg::timecode_output_headphone_outut_level_select, level); }
  530. virtual xs_error_code_t TimecodeOutputModule_getHeadphoneOutputLevel(int &level) { REG_READ(reg::timecode_output_headphone_outut_level_select, level); }
  531. virtual xs_error_code_t ExternalGenlock_detectFreq(float &freq) override { return readfreq(reg::external_genlock_freq, freq); }
  532. virtual xs_error_code_t SysGenlock_setSrc(uint32_t source) override { return reg_write(reg::sys_genlock_source, source); }
  533. virtual xs_error_code_t SysGenlock_getSrc(uint32_t &extern_or_internal) override {
  534. REG_READ(reg::sys_genlock_source, extern_or_internal);
  535. return kxs_ec_success;
  536. }
  537. virtual xs_error_code_t SysGenlock_readFreq(float &freq) override { return readfreq(reg::sys_genlock_freq, freq); }
  538. virtual xs_error_code_t SysClock_setSrc(SignalType_t sig) override {
  539. if (sig != SIGNAL_TTLIN1 && //
  540. sig != SIGNAL_TTLIN2 && //
  541. sig != SIGNAL_TTLIN3 && //
  542. sig != SIGNAL_TTLIN4 && //
  543. sig != SIGNAL_INTERNAL_CLOCK_SIG && //
  544. sig != SIGNAL_SYS_GENLOCK_OUTPUT && //
  545. sig != SIGNAL_SYS_TIMECODE_FREQ_OUTPUT) {
  546. return kxs_ec_param_error;
  547. }
  548. return reg_write(reg::sys_clock_source, sig);
  549. }
  550. virtual xs_error_code_t SysClock_getSrc(SignalType_t &sig) override { REG_READ(reg::sys_clock_source, sig); }
  551. virtual xs_error_code_t SysClock_setTriggerEdge(TriggerEdge_t edge) override { return reg_write(reg::sys_clock_trigger_edge_select, edge); }
  552. virtual xs_error_code_t SysClock_getTriggerEdge(TriggerEdge_t &edge) override { return _reg_read(reg::sys_clock_trigger_edge_select, edge); }
  553. virtual xs_error_code_t SysClock_setFreqDivision(uint32_t div) override { return reg_write(reg::sys_clock_freq_division_ctrl, div); }
  554. virtual xs_error_code_t SysClock_geFreqtDivision(uint32_t &div) override { return _reg_read(reg::sys_clock_freq_division_ctrl, div); }
  555. virtual xs_error_code_t SysClock_setFreqMultiplication(uint32_t muti) override { return reg_write(reg::sys_clock_freq_multiplication_ctrl, muti); }
  556. virtual xs_error_code_t SysClock_getFreqMultiplication(uint32_t &muti) override { return _reg_read(reg::sys_clock_freq_multiplication_ctrl, muti); }
  557. virtual xs_error_code_t SysClock_readOutSigFreq(float &freq) override { return readfreq(reg::sys_clock_outfreq_detect, freq); }
  558. virtual xs_error_code_t SysClock_readInSigFreq(float &freq) override { return readfreq(reg::sys_clock_infreq_detect, freq); }
  559. virtual xs_error_code_t storageConfig() override;
  560. xs_error_code_t DelayContrl_setDelay(int index, uint32_t delay_us) { //
  561. DO_XSYNC(reg_write(reg::delayer_delay_sig_index, index, 10));
  562. DO_XSYNC(reg_write(reg::delayer_delay_us, delay_us, 10));
  563. return kxs_ec_success;
  564. }
  565. xs_error_code_t DelayContrl_getDelay(int index, uint32_t &delay_us) {
  566. DO_XSYNC(reg_write(reg::delayer_delay_sig_index, index, 10));
  567. DO_XSYNC(reg_read(reg::delayer_delay_us, delay_us, 10));
  568. return kxs_ec_success;
  569. }
  570. // assign sys_sig_delay_in[0] = sync_ttl_in1; //
  571. // assign sys_sig_delay_in[1] = sync_ttl_in2; //
  572. // assign sys_sig_delay_in[2] = sync_ttl_in3; //
  573. // assign sys_sig_delay_in[3] = sync_ttl_in4; //
  574. // assign sys_sig_delay_in[4] = timecode_headphone_in; //
  575. // assign sys_sig_delay_in[5] = timecode_bnc_in; //
  576. // assign sys_sig_delay_in[6] = genlock_in_hsync; //
  577. // assign sys_sig_delay_in[7] = genlock_in_vsync; //
  578. // assign sys_sig_delay_in[8] = genlock_in_fsync; //
  579. // assign sys_sig_delay_in[9] = before_delay__sync_ttl_out1; //
  580. // assign sys_sig_delay_in[10] = before_delay__sync_ttl_out2; //
  581. // assign sys_sig_delay_in[11] = before_delay__sync_ttl_out3; //
  582. // assign sys_sig_delay_in[12] = before_delay__sync_ttl_out4; //
  583. // assign sys_sig_delay_in[13] = before_delay__stm32if_start_signal_out; //
  584. // assign sys_sig_delay_in[14] = before_delay__stm32if_camera_sync_out; //
  585. // assign sys_sig_delay_in[15] = before_delay__stm32if_timecode_sync_out; //
  586. virtual xs_error_code_t DelayContrl_setInputDelay(uint32_t delay_us) override {
  587. DO_XSYNC(DelayContrl_setDelay(0, delay_us * 10));
  588. DO_XSYNC(DelayContrl_setDelay(1, delay_us * 10));
  589. DO_XSYNC(DelayContrl_setDelay(2, delay_us * 10));
  590. DO_XSYNC(DelayContrl_setDelay(3, delay_us * 10));
  591. DO_XSYNC(DelayContrl_setDelay(4, delay_us * 10));
  592. DO_XSYNC(DelayContrl_setDelay(5, delay_us * 10));
  593. DO_XSYNC(DelayContrl_setDelay(6, delay_us * 10));
  594. DO_XSYNC(DelayContrl_setDelay(7, delay_us * 10));
  595. DO_XSYNC(DelayContrl_setDelay(8, delay_us * 10));
  596. return kxs_ec_success;
  597. }
  598. virtual xs_error_code_t DelayContrl_getInputDelay(uint32_t &delay_us) override {
  599. uint32_t delay_cnt;
  600. DO_XSYNC(DelayContrl_getDelay(8, delay_cnt));
  601. delay_us = delay_cnt / 10;
  602. return kxs_ec_success;
  603. }
  604. virtual xs_error_code_t DelayContrl_setOutputDelay(uint32_t delay_us) override {
  605. DO_XSYNC(DelayContrl_setDelay(9, delay_us * 10));
  606. DO_XSYNC(DelayContrl_setDelay(10, delay_us * 10));
  607. DO_XSYNC(DelayContrl_setDelay(11, delay_us * 10));
  608. DO_XSYNC(DelayContrl_setDelay(12, delay_us * 10));
  609. DO_XSYNC(DelayContrl_setDelay(13, delay_us * 10));
  610. DO_XSYNC(DelayContrl_setDelay(14, delay_us * 10));
  611. DO_XSYNC(DelayContrl_setDelay(15, delay_us * 10));
  612. return kxs_ec_success;
  613. }
  614. virtual xs_error_code_t DelayContrl_getOutputDelay(uint32_t &delay_us) override {
  615. uint32_t delay_cnt;
  616. DO_XSYNC(DelayContrl_getDelay(15, delay_cnt));
  617. delay_us = delay_cnt / 10;
  618. return kxs_ec_success;
  619. }
  620. private:
  621. xs_error_code_t doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms = 100);
  622. xs_error_code_t xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms);
  623. xs_error_code_t readtimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t &timecode);
  624. xs_error_code_t writetimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t timecode);
  625. xs_error_code_t readfreq(uint32_t reg, float &freq);
  626. xs_error_code_t reg_write(uint32_t regadd, uint32_t regvalue, int32_t overtime_ms = 100);
  627. xs_error_code_t reg_read_muti(uint32_t regadd, uint32_t nreg, vector<uint32_t> &regvalues, int32_t overtime_ms = 100);
  628. xs_error_code_t readTimecodeFormat(uint32_t freqreg, uint32_t timecode_reg0, uint32_t timecode_reg1, TimecodeFormat_t &format) {
  629. float freq;
  630. uint32_t timecode_regval;
  631. DO_XSYNC(readfreq(freqreg, freq));
  632. DO_XSYNC(reg_read(timecode_reg0, timecode_regval, 10));
  633. uint32_t bit10 = (timecode_regval >> 10) & 0x1;
  634. if (Xsync_feq(freq, 23.98, 0.01)) {
  635. format = TIMECODE_FPS2398;
  636. } else if (Xsync_feq(freq, 24, 0.01)) {
  637. format = TIMECODE_FPS2400;
  638. } else if (Xsync_feq(freq, 25, 0.01)) {
  639. format = TIMECODE_FPS2500;
  640. } else if (Xsync_feq(freq, 29.97, 0.01)) {
  641. if (bit10) {
  642. format = TIMECODE_FPS2997Drop;
  643. } else {
  644. format = TIMECODE_FPS2997;
  645. }
  646. } else if (Xsync_feq(freq, 30, 0.01)) {
  647. format = TIMECODE_FPS3000;
  648. } else {
  649. format = TIMECODE_NONE;
  650. }
  651. return kxs_ec_success;
  652. }
  653. template <typename T>
  654. xs_error_code_t _reg_read(uint32_t regadd, T &regvalue, int32_t overtime_ms = 100) {
  655. uint32_t regvalue_u32;
  656. xs_error_code_t ret = reg_read(regadd, regvalue_u32, overtime_ms);
  657. if (ret == kxs_ec_success) {
  658. regvalue = (T)regvalue_u32;
  659. }
  660. return ret;
  661. }
  662. void parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length);
  663. void parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length);
  664. };
  665. /*******************************************************************************
  666. * Xsync *
  667. *******************************************************************************/
  668. Xsync &Xsync::Ins() {
  669. static Xsync xsync;
  670. return xsync;
  671. }
  672. xs_error_code_t Xsync::readSn(string &sn) {
  673. uint32_t sn0;
  674. uint32_t sn1;
  675. uint32_t sn2;
  676. DO_XSYNC(reg_read(reg::ksn_id0, sn0));
  677. DO_XSYNC(reg_read(reg::ksn_id1, sn1));
  678. DO_XSYNC(reg_read(reg::ksn_id2, sn2));
  679. char buf[128] = {0};
  680. sprintf(buf, "%02d%02d%04d", sn0, sn1, sn2);
  681. sn = buf;
  682. return kxs_ec_success;
  683. }
  684. xs_error_code_t Xsync::readMac(string &mac) {
  685. // mac = "";
  686. uint32_t mac0;
  687. uint32_t mac1;
  688. DO_XSYNC(reg_read(reg::kmac0, mac0));
  689. DO_XSYNC(reg_read(reg::kmac1, mac1));
  690. char buf[128] = {0};
  691. sprintf(buf, "%02x-%02x-%02x-%02x-%02x-%02x", (mac0 >> 0) & 0xff, (mac0 >> 8) & 0xff, (mac0 >> 16) & 0xff, (mac0 >> 24) & 0xff, (mac1 >> 0) & 0xff, (mac1 >> 8) & 0xff);
  692. mac = buf;
  693. return kxs_ec_success;
  694. }
  695. #if 0
  696. xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) {
  697. lock_guard<recursive_mutex> lock(lock_);
  698. string xsyncip = _getXsyncIp();
  699. m_xsync_reg_udp->clearRxBuffer();
  700. if (!m_xsync_reg_udp) return kxs_ec_device_offline;
  701. if (xsyncip.empty()) return kxs_ec_device_offline;
  702. cmd->index = txpacket_index++;
  703. XsyncNetAdd toadd = {xsyncip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT};
  704. xs_error_code_t ecode = //
  705. m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr);
  706. if (ecode != kxs_ec_success) {
  707. return ecode;
  708. }
  709. XsyncNetAdd fromadd;
  710. while (true) {
  711. ecode = m_xsync_reg_udp->receive((char *)rx_data, buffersize, fromadd, overtime_ms);
  712. if (ecode != kxs_ec_success) {
  713. return ecode;
  714. }
  715. if (rx_data->index != cmd->index) {
  716. continue;
  717. }
  718. break;
  719. }
  720. return (xs_error_code_t)rx_data->data[0];
  721. }
  722. #endif
  723. xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) {
  724. lock_guard<recursive_mutex> lock(lock_);
  725. string xsyncip = _getXsyncIp();
  726. m_xsync_reg_udp->clearRxBuffer();
  727. if (!m_xsync_reg_udp) return kxs_ec_device_offline;
  728. if (xsyncip.empty()) return kxs_ec_device_offline;
  729. cmd->index = txpacket_index++;
  730. rxContext.clear();
  731. rxContext.setWait(true, cmd->index);
  732. XsyncNetAdd toadd = {xsyncip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT};
  733. xs_error_code_t ecode = //
  734. m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr);
  735. if (ecode != kxs_ec_success) {
  736. return ecode;
  737. }
  738. for (int32_t i = 0; i < overtime_ms; i++) {
  739. if (rxContext.isReady()) {
  740. memcpy(rx_data, rxContext.data(), rxContext.size());
  741. return (xs_error_code_t)rx_data->data[0];
  742. }
  743. std::this_thread::sleep_for(std::chrono::milliseconds(1));
  744. }
  745. return kxs_ec_overtime;
  746. }
  747. xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, int32_t overtime_ms) { //
  748. uint32_t readbak = 0;
  749. return reg_write(regadd, regvalue, readbak, overtime_ms);
  750. }
  751. xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms) {
  752. /**
  753. * @brief
  754. *
  755. *
  756. * kxsync_packet_type_reg_write
  757. * tx: regadd,regdata
  758. * rx: ecode,regdata
  759. */
  760. uint8_t txdata[128] = {0};
  761. uint8_t rxdata[128] = {0};
  762. iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
  763. iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
  764. txpacket->type = kxsync_packet_type_cmd;
  765. txpacket->index = txpacket_index++;
  766. txpacket->cmd = kxsync_packet_type_reg_write;
  767. txpacket->ndata = 2;
  768. txpacket->data[0] = regadd;
  769. txpacket->data[1] = regvalue;
  770. auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
  771. if (ecode != kxs_ec_success) {
  772. return ecode;
  773. }
  774. regbackvalue = rxpacket->data[1];
  775. return ecode;
  776. }
  777. xs_error_code_t Xsync::reg_read(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms) {
  778. /**
  779. * @brief
  780. *
  781. *
  782. * kxsync_packet_type_reg_write
  783. * tx: regadd,regdata
  784. * rx: ecode,regdata
  785. */
  786. uint8_t txdata[128] = {0};
  787. uint8_t rxdata[128] = {0};
  788. iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
  789. iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
  790. txpacket->type = kxsync_packet_type_cmd;
  791. txpacket->index = txpacket_index++;
  792. txpacket->cmd = kxsync_packet_type_reg_read;
  793. txpacket->ndata = 2;
  794. txpacket->data[0] = regadd;
  795. txpacket->data[1] = regvalue;
  796. auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
  797. if (ecode != kxs_ec_success) {
  798. return ecode;
  799. }
  800. regvalue = rxpacket->data[1];
  801. return ecode;
  802. }
  803. xs_error_code_t Xsync::reg_read_muti(uint32_t regadd, uint32_t nreg, vector<uint32_t> &regvalues, int32_t overtime_ms) {
  804. /**
  805. * @brief
  806. *
  807. *
  808. * kxsync_packet_type_reg_read_regs
  809. * tx: regstartadd,nreg
  810. * rx: ecode,regdatas
  811. */
  812. uint8_t txdata[128] = {0};
  813. uint8_t rxdata[1280] = {0};
  814. iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
  815. iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
  816. txpacket->type = kxsync_packet_type_cmd;
  817. txpacket->index = txpacket_index++;
  818. txpacket->cmd = kxsync_packet_type_reg_read_regs;
  819. txpacket->ndata = 2;
  820. txpacket->data[0] = regadd;
  821. txpacket->data[1] = nreg;
  822. auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
  823. if (ecode != kxs_ec_success) {
  824. return ecode;
  825. }
  826. if (rxpacket->ndata > 0) {
  827. for (int i = 0; i < rxpacket->ndata - 1; i++) {
  828. regvalues.push_back(rxpacket->data[i + 1]);
  829. }
  830. }
  831. return ecode;
  832. }
  833. xs_error_code_t Xsync::readtimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t &timecode) {
  834. uint32_t readbak = 0;
  835. xs_error_code_t ecode = kxs_ec_success;
  836. uint32_t tc0 = 0;
  837. uint32_t tc1 = 0;
  838. ecode = reg_read(reg0, tc0, 10);
  839. if (ecode != kxs_ec_success) return ecode;
  840. ecode = reg_read(reg1, tc1, 10);
  841. if (ecode != kxs_ec_success) return ecode;
  842. Timecode64_t tc64 = {0};
  843. tc64.tc0 = tc0;
  844. tc64.tc1 = tc1;
  845. timecode = timecode64ToXsyncTimeCode(tc64);
  846. return ecode;
  847. }
  848. xs_error_code_t Xsync::writetimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t timecode) {
  849. uint32_t readbak = 0;
  850. xs_error_code_t ecode = kxs_ec_success;
  851. Timecode64_t tc64 = timecodeTo64(timecode);
  852. ecode = reg_write(reg0, tc64.tc0, readbak, 10);
  853. if (ecode != kxs_ec_success) return ecode;
  854. ecode = reg_write(reg1, tc64.tc1, readbak, 10);
  855. if (ecode != kxs_ec_success) return ecode;
  856. return ecode;
  857. }
  858. xs_error_code_t Xsync::readfreq(uint32_t reg, float &freqfloat) {
  859. uint32_t freq_cnt = 0;
  860. DO_XSYNC(reg_read(reg, freq_cnt));
  861. if (freq_cnt == 0) {
  862. freqfloat = 0;
  863. }
  864. if (freq_cnt != 0) {
  865. uint32_t freq_100x = ((1.0 / (freq_cnt * 1.0 / (10 * 1000 * 1000))) * 100 + 0.5); //+0.5是因为c++ 小数强转成整数时是取整,而非四舍五入
  866. // ZLOGI(TAG, "freq_10x %f", freq_10x);
  867. freqfloat = freq_100x / 100.0;
  868. } else {
  869. freqfloat = 0;
  870. }
  871. return kxs_ec_success;
  872. }
  873. void Xsync::parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {}
  874. void Xsync::parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
  875. uint32_t count = 0;
  876. uint32_t data0 = data[7];
  877. uint32_t data1 = data[6];
  878. uint32_t data2 = data[5];
  879. uint32_t data3 = data[4];
  880. count = data0 + (data1 << 8) + (data2 << 16) + (data3 << 24);
  881. xysnc_camera_sync_data_t camera_sync_data;
  882. camera_sync_data.frameIndex = count;
  883. if (m_on_camera_sync_msg_cb) m_on_camera_sync_msg_cb(&camera_sync_data);
  884. }
  885. xs_error_code_t Xsync::generatorNewMac() { return doaction(xsync_stm32_action_generator_new_mac, 0, nullptr, 2000); }
  886. xs_error_code_t Xsync::factoryReset() { return doaction(xsync_stm32_action_factory_reset, 0, nullptr, 1000); }
  887. xs_error_code_t Xsync::reboot() { return doaction(xsync_stm32_action_reboot, 0, nullptr); }
  888. xs_error_code_t Xsync::storageConfig() { return doaction(xsync_stm32_action_storage_cfg, 0, nullptr, 1000); }
  889. xs_error_code_t Xsync::doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms) {
  890. //
  891. uint32_t readbak = 0;
  892. xs_error_code_t ecode;
  893. ecode = reg_write(reg::kstm32_action_val0, actionval, readbak);
  894. if (ecode != kxs_ec_success) return ecode;
  895. ecode = reg_write(reg::kstm32_action0, action, readbak, overtime_ms);
  896. if (ecode != kxs_ec_success) return ecode;
  897. if (ackreturn) *ackreturn = readbak;
  898. return ecode;
  899. }
  900. namespace xsync {
  901. void XsyncInit(I_XSUDPFactory *xsync_udp_factory) { g_xsync_udp_factory = xsync_udp_factory; }
  902. IXsync *XsyncIns() { return &Xsync::Ins(); }
  903. } // namespace xsync