|
|
#include "xsync.hpp"
#include <string.h>
#include <map>
#define ENABLE_LOG
#ifdef ENABLE_LOG
#include "../src/logger.hpp"
#endif
#define TAG "XSYNC"
using namespace xsync; using namespace std;
/**
* @brief XSYNC协议端口 */ #define IFLYTOP_XSYNC_SERVICE_XSYNC_PORT 19900 // xsync端端口
#define IFLYTOP_XSYNC_SERVICE_PC_PORT 19901 // pc 端端口
#define IFLYTOP_XSYNC_TIMECODE_REPORT_XSYNC_PORT 19902 // xsync端端口
#define IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT 19903 // pc端端口
#define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_XSYNC_PORT 13013 // xsync端端口
#define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT 13014 // pc端端口
#define DO_XSYNC(exptr) \
{ \ xs_error_code_t ecode = exptr; \ if (ecode != kxs_ec_success) return ecode; \ }
static uint32_t ipToUint32(const std::string &ipAddress, bool &suc) { uint32_t result = 0; std::istringstream iss(ipAddress); std::string segment; int i = 0;
while (std::getline(iss, segment, '.')) { uint32_t octet = std::stoi(segment); if (octet > 255) { suc = false; return 0; } result |= (octet << ((3 - i) * 8)); i++; } if (i != 4) { suc = false; return 0; } suc = true;
uint32_t result_n = 0; result_n |= ((result & 0xff000000) >> 24); result_n |= ((result & 0x00ff0000) >> 8); result_n |= ((result & 0x0000ff00) << 8); result_n |= ((result & 0x000000ff) << 24);
return result_n; }
namespace xsync { namespace ttlout_module {
static map<string, TriggerSigType_t> TriggerSigType2StrMap = { {"logic0", tri_logic0}, {"logic1", tri_logic1}, {"ttlin1_module_ext", tri_ttlin1_module_ext}, {"ttlin1_module_divide", tri_ttlin1_module_divide}, {"ttlin2_module_ext", tri_ttlin2_module_ext}, {"ttlin2_module_divide", tri_ttlin2_module_divide}, {"ttlin3_module_ext", tri_ttlin3_module_ext}, {"ttlin3_module_divide", tri_ttlin3_module_divide}, {"ttlin4_module_ext", tri_ttlin4_module_ext}, {"ttlin4_module_divide", tri_ttlin4_module_divide}, {"internal_en_flag", tri_internal_en_flag}, {"genlock_frame_sync_ext", tri_genlock_frame_sync_ext}, {"genlock_frame_sync_internal", tri_genlock_frame_sync_internal}, {"timecode_frame_sync_ext", tri_timecode_frame_sync_ext}, {"timecode_frame_sync_internal", tri_timecode_frame_sync_internal}, {"timecode_serial_data_ext", tri_timecode_serial_data_ext}, {"timecode_serial_data_internal", tri_timecode_serial_data_internal}, {"internal_100hz", tri_internal_100hz}, }; static map<string, OutputSigType_t> Str2TriggerSigTypeMap = { {"logic0", OutSigType_logic0}, //
{"logic1", OutSigType_logic1}, //
{"test_signal", OutSigType_test_signal}, //
{"input_signal", OutSigType_input_signal}, //
{"input_signal_mirror", OutSigType_input_signal_mirror}, //
{"trigger_mode_signal", OutSigType_trigger_mode_signal}, //
{"trigger_mode_signal_mirror", OutSigType_trigger_mode_signal_mirror}, };
string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : TriggerSigType2StrMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = TriggerSigType2StrMap.find(type); if (it != TriggerSigType2StrMap.end()) { return it->second; } return tri_logic0; } string OutputSigType2Str(OutputSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } OutputSigType_t Str2OutputSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return OutSigType_logic0; }
list<string> TriggerSigTypeStrSet() { list<string> ret; for (auto &item : TriggerSigType2StrMap) { ret.push_back(item.first); } return ret; } list<string> OutputSigTypeStrSet() { list<string> ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; }
} // namespace ttlout_module
namespace sig_generator_module { static map<string, ControlMode_t> Str2ControlModeMap = { {"manualTrigger", kControlMode_manualTrigger}, //
{"extTimecodeTrigger", kControlMode_externalTimecodeTrigger}, {"ttl1Trigger", kControlMode_externalTTL1Trigger}, {"ttl2Trigger", kControlMode_externalTTL2Trigger}, {"ttl3Trigger", kControlMode_externalTTL3Trigger}, {"ttl4Trigger", kControlMode_externalTTL4Trigger}, };
string ControlMode2Str(ControlMode_t mode) { for (auto &item : Str2ControlModeMap) { if (item.second == mode) return item.first; } return "unkown"; } ControlMode_t Str2ControlMode(string mode) { auto it = Str2ControlModeMap.find(mode); if (it != Str2ControlModeMap.end()) { return it->second; } return kControlMode_manualTrigger; } list<string> ControlModeStrSet() { list<string> ret; for (auto &item : Str2ControlModeMap) { ret.push_back(item.first); } return ret; } } // namespace sig_generator_module
static map<string, TimecodeFormat_t> Str2TimecodeFormatMap = { {"fps2398", TIMECODE_FPS2398}, //
{"fps2400", TIMECODE_FPS2400}, //
{"fps2500", TIMECODE_FPS2500}, //
{"fps2997", TIMECODE_FPS2997}, //
{"fps2997Drop", TIMECODE_FPS2997Drop}, {"fps3000", TIMECODE_FPS3000}, //
};
static map<string, GenlockFormat_t> Str2GenlockFormatMap = { {"fps2397", GENLOCK_FPS2397}, //
{"fps2398", GENLOCK_FPS2398}, //
{"fps2400", GENLOCK_FPS2400}, //
{"fps2500", GENLOCK_FPS2500}, //
{"fps2997", GENLOCK_FPS2997}, //
{"fps3000", GENLOCK_FPS3000}, //
{"fps5000", GENLOCK_FPS5000}, //
{"fps5994", GENLOCK_FPS5994}, //
{"fps6000", GENLOCK_FPS6000}, //
};
string GenlockFormatToStr(GenlockFormat_t fomrat) { for (auto &item : Str2GenlockFormatMap) { if (item.second == fomrat) return item.first; } return "unkown"; }
string TimecodeFormatToStr(TimecodeFormat_t fomrat) { for (auto &item : Str2TimecodeFormatMap) { if (item.second == fomrat) return item.first; } return "unkown"; }
GenlockFormat_t Str2GenlockFormat(string format) { auto it = Str2GenlockFormatMap.find(format); if (it != Str2GenlockFormatMap.end()) { return it->second; } return GENLOCK_FPS2397; }
TimecodeFormat_t Str2TimecodeFormat(string format) { auto it = Str2TimecodeFormatMap.find(format); if (it != Str2TimecodeFormatMap.end()) { return it->second; } return TIMECODE_FPS2398; }
list<string> GenlockFormatStrSet() { list<string> ret; for (auto &item : Str2GenlockFormatMap) { ret.push_back(item.first); } return ret; }
list<string> TimecodeFormatStrSet() { list<string> ret; for (auto &item : Str2TimecodeFormatMap) { ret.push_back(item.first); } return ret; }
string XsyncTimecodeToStr(XsyncTimecode_t timecode) { char buf[32] = {0}; sprintf(buf, "%02d:%02d:%02d:%02d", timecode.hour, timecode.minute, timecode.second, timecode.frame); return string(buf); } XsyncTimecode_t Str2XsyncTimecode(string timecode) { XsyncTimecode_t ret; char buf[128] = {0}; strncpy(buf, timecode.c_str(), 127); sscanf(buf, "%02d:%02d:%02d:%02d", &ret.hour, &ret.minute, &ret.second, &ret.frame); return ret; }
namespace timecode_output_module { static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = { {"off", koff}, //
{"ext_timecode_sig", kext_timecode_sig}, {"internal_timecode_sig", kinternal_timecode_sig}, };
string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return koff; } list<string> TriggerSigTypeStrSet() { list<string> ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; }
static map<string, OutputSigLevelType_t> Str2OutputSigLevelTypeMap = { {"line", kline}, //
{"mic", kmic}, }; string OutputSigLevelType2Str(OutputSigLevelType_t type) { for (auto &item : Str2OutputSigLevelTypeMap) { if (item.second == type) return item.first; } return "unkown"; } OutputSigLevelType_t Str2OutputSigLevelType(string type) { auto it = Str2OutputSigLevelTypeMap.find(type); if (it != Str2OutputSigLevelTypeMap.end()) { return it->second; } return kline; } list<string> OutputSigLevelTypeStrSet() { list<string> ret; for (auto &item : Str2OutputSigLevelTypeMap) { ret.push_back(item.first); } return ret; }
} // namespace timecode_output_module
namespace camera_sync_packet_generator_module { static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = { {"off", koff}, //
{"internal_genlock_sig", kinternal_genlock_sig}, {"ext_genlock_sig", kext_genlock_sig}, }; string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return koff; } list<string> TriggerSigTypeStrSet() { list<string> ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; }
} // namespace camera_sync_packet_generator_module
namespace timecode_input_module {
static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = { {"off", koff}, //
{"bnc_timecode", kbnc_timecode}, {"headphone_timecode", kheadphone_timecode}, }; string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return koff; } list<string> TriggerSigTypeStrSet() { list<string> ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; } } // namespace timecode_input_module
} // namespace xsync
static XsyncTimecode_t timecode64ToXsyncTimeCode(Timecode64_t tc64) { uint8_t frameuints = tc64.tc0 & 0x0f; uint8_t frame10s = (tc64.tc0 >> 8) & 0x3; uint8_t seconduints = (tc64.tc0 >> 16) & 0x0f; uint8_t second10s = (tc64.tc0 >> 24) & 0x07;
uint8_t minuteuints = tc64.tc1 & 0x0f; uint8_t minute10s = (tc64.tc1 >> 8) & 0x07; uint8_t houruints = (tc64.tc1 >> 16) & 0x0f; uint8_t hour10s = (tc64.tc1 >> 24) & 0x03;
XsyncTimecode_t timecode; timecode.hour = hour10s * 10 + houruints; timecode.minute = minute10s * 10 + minuteuints; timecode.second = second10s * 10 + seconduints; timecode.frame = frame10s * 10 + frameuints; return timecode; }
static Timecode64_t timecodeTo64(XsyncTimecode_t tc) { Timecode64_t tc64;
uint32_t frameuints = tc.frame % 10; uint32_t frame10s = tc.frame / 10; uint32_t seconduints = tc.second % 10; uint32_t second10s = tc.second / 10;
uint32_t minuteuints = tc.minute % 10; uint32_t minute10s = tc.minute / 10; uint32_t houruints = tc.hour % 10; uint32_t hour10s = tc.hour / 10;
tc64.tc0 = frameuints + (frame10s << 8) + (seconduints << 16) + (second10s << 24); tc64.tc1 = minuteuints + (minute10s << 8) + (houruints << 16) + (hour10s << 24); return tc64; }
/*******************************************************************************
* Xsync * *******************************************************************************/ Xsync::Xsync(/* args */) {}
Xsync &Xsync::Ins() { static Xsync xsync; return xsync; } void Xsync::initialize(I_XSUDPFactory *xsync_udp_factory) { m_xsync_udp_factory = xsync_udp_factory; }
xs_error_code_t Xsync::connect(string xsync_ip) { lock_guard<recursive_mutex> lock(lock_);
m_xsync_ip = xsync_ip; disConnect(); /**
* @brief 创建 m_xsync_reg_udp */
xs_error_code_t ecode = kxs_ec_success;
auto xsync_reg_udp = m_xsync_udp_factory->createXSUDP(); ecode = xsync_reg_udp->initialize("0.0.0.0", IFLYTOP_XSYNC_SERVICE_PC_PORT); if (ecode != kxs_ec_success) { return ecode; } /**
* @brief 创建 m_xsync_timecode_udp_listener */ auto xsync_timecode_udp_listener = m_xsync_udp_factory->createXSUDP();
ecode = xsync_timecode_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT); if (ecode != kxs_ec_success) { return ecode; } ecode = xsync_timecode_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseTimecodeMsgAndReport(from, data, length); }); if (ecode != kxs_ec_success) { return ecode; }
/**
* @brief 创建 m_xsync_camera_sync_udp_listener */ auto xsync_camera_sync_udp_listener = m_xsync_udp_factory->createXSUDP();
ecode = xsync_camera_sync_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT); if (ecode != kxs_ec_success) { return ecode; } ecode = xsync_camera_sync_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseCameraSyncMsgAndReport(from, data, length); }); if (ecode != kxs_ec_success) { return ecode; }
m_xsync_reg_udp = xsync_reg_udp; m_xsync_timecode_udp_listener = xsync_timecode_udp_listener; m_xsync_camera_sync_udp_listener = xsync_camera_sync_udp_listener;
m_net_state = kxsync_net_state_connected; return ecode; } xs_error_code_t Xsync::disConnect() { lock_guard<recursive_mutex> lock(lock_);
if (m_xsync_reg_udp != nullptr) { m_xsync_reg_udp->stopReceive(); m_xsync_reg_udp = nullptr; }
if (m_xsync_timecode_udp_listener != nullptr) { m_xsync_timecode_udp_listener->stopReceive(); m_xsync_timecode_udp_listener = nullptr; }
if (m_xsync_camera_sync_udp_listener != nullptr) { m_xsync_camera_sync_udp_listener->stopReceive(); m_xsync_camera_sync_udp_listener = nullptr; }
m_net_state = kxsync_net_state_disconnect; return kxs_ec_success; } xsync_net_state_t Xsync::getNetState() { return m_net_state; }
void Xsync::Basic_registerOnTimecodeMsgCallback(xsync_on_timecode_msg_t on_timecode_msg_cb) { m_on_timecode_msg_cb = on_timecode_msg_cb; } void Xsync::Basic_registerOnCameraSyncMsgCallback(xsync_on_camera_sync_msg_t on_camera_sync_msg_cb) { m_on_camera_sync_msg_cb = on_camera_sync_msg_cb; } void Xsync::Basic_registerOnWorkstateChangeMsgCallback(xsync_on_workstate_change_msg_t on_workstate_change_msg_cb) { m_on_workstate_change_msg_cb = on_workstate_change_msg_cb; }
xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) { lock_guard<recursive_mutex> lock(lock_); if (!m_xsync_reg_udp) return kxs_ec_lose_connect; m_xsync_reg_udp->clearRxBuffer();
cmd->index = txpacket_index++;
XsyncNetAdd toadd = {m_xsync_ip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT}; xs_error_code_t ecode = //
m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr); if (ecode != kxs_ec_success) { return ecode; }
XsyncNetAdd fromadd; while (true) { // ZLOGI(TAG, "start rx wait for rxdata");
ecode = m_xsync_reg_udp->receive((char *)rx_data, buffersize, fromadd, overtime_ms); // ZLOGI(TAG, "end rx wait for rxdata");
if (ecode != kxs_ec_success) { return ecode; } if (rx_data->index != cmd->index) { // ZLOGI(TAG, "packet index error %d %d", cmd->index, rx_data->index);
continue; } break; }
return (xs_error_code_t)rx_data->data[0]; }
xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, uint32_t ®backvalue, int32_t overtime_ms) { /**
* @brief * 协议说明 * * kxsync_packet_type_reg_write * tx: regadd,regdata * rx: ecode,regdata */
uint8_t txdata[128] = {0}; uint8_t rxdata[128] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata; iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd; txpacket->index = txpacket_index++; txpacket->cmd = kxsync_packet_type_reg_write; txpacket->ndata = 2; txpacket->data[0] = regadd; txpacket->data[1] = regvalue;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms); if (ecode != kxs_ec_success) { return ecode; }
regbackvalue = rxpacket->data[1]; return ecode; }
xs_error_code_t Xsync::reg_read(uint32_t regadd, uint32_t ®value, int32_t overtime_ms) { /**
* @brief * 协议说明 * * kxsync_packet_type_reg_write * tx: regadd,regdata * rx: ecode,regdata */
uint8_t txdata[128] = {0}; uint8_t rxdata[128] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata; iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd; txpacket->index = txpacket_index++; txpacket->cmd = kxsync_packet_type_reg_read; txpacket->ndata = 2; txpacket->data[0] = regadd; txpacket->data[1] = regvalue;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms); if (ecode != kxs_ec_success) { return ecode; } regvalue = rxpacket->data[1]; return ecode; } xs_error_code_t Xsync::reg_read_muti(uint32_t regadd, uint32_t nreg, vector<uint32_t> ®values, int32_t overtime_ms) { /**
* @brief * 协议说明 * * kxsync_packet_type_reg_read_regs * tx: regstartadd,nreg * rx: ecode,regdatas */
uint8_t txdata[128] = {0}; uint8_t rxdata[1280] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata; iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd; txpacket->index = txpacket_index++; txpacket->cmd = kxsync_packet_type_reg_read_regs; txpacket->ndata = 2; txpacket->data[0] = regadd; txpacket->data[1] = nreg;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms); if (ecode != kxs_ec_success) { return ecode; }
if (rxpacket->ndata > 0) { for (int i = 0; i < rxpacket->ndata - 1; i++) { regvalues.push_back(rxpacket->data[i + 1]); } } return ecode; }
void Xsync::parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) { iflytop_xsync_event_report_packet_t *packet = (iflytop_xsync_event_report_packet_t *)data; if (packet->eventid == ktimecode_report_event) { Timecode64_t tc64; tc64.tc0 = packet->data[0]; tc64.tc1 = packet->data[1]; XsyncTimecode_t timecode = timecode64ToXsyncTimeCode(tc64); if (m_on_timecode_msg_cb) m_on_timecode_msg_cb(&timecode); } else if (packet->eventid == kxsync_work_state_report_event) { // 信号发生器状态改变
if (m_on_workstate_change_msg_cb) m_on_workstate_change_msg_cb(packet->data[0]); } } void Xsync::parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) { uint32_t count = 0;
uint32_t data0 = data[7]; uint32_t data1 = data[6]; uint32_t data2 = data[5]; uint32_t data3 = data[4];
count = data0 + (data1 << 8) + (data2 << 16) + (data3 << 24);
xysnc_camera_sync_data_t camera_sync_data; camera_sync_data.frameIndex = count;
if (m_on_camera_sync_msg_cb) m_on_camera_sync_msg_cb(&camera_sync_data); }
xs_error_code_t Xsync::Basic_generatorNewMac() { return doaction(xsync_stm32_action_generator_new_mac, 0, nullptr, 2000); } xs_error_code_t Xsync::Basic_factoryReset() { return doaction(xsync_stm32_action_factory_reset, 0, nullptr, 1000); } xs_error_code_t Xsync::Basic_reboot() { return doaction(xsync_stm32_action_Basic_reboot, 0, nullptr); } xs_error_code_t Xsync::storageConfig() { return doaction(xsync_stm32_action_storage_cfg, 0, nullptr, 1000); } xs_error_code_t Xsync::Basic_changeNetworkConfig(string ip, string mask, string gateway) { uint32_t ip32 = 0; uint32_t mask32 = 0; uint32_t gateway32 = 0; xs_error_code_t ecode; bool suc = false;
ip32 = (uint32_t)ipToUint32(ip.c_str(), suc); if (!suc) return kxs_ec_param_error; mask32 = (uint32_t)ipToUint32(mask.c_str(), suc); if (!suc) return kxs_ec_param_error; gateway32 = (uint32_t)ipToUint32(gateway.c_str(), suc); if (!suc) return kxs_ec_param_error;
uint32_t readbak = 0;
ecode = reg_write(reg::kstm32_ip, ip32, readbak); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kstm32_netmask, mask32, readbak); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kstm32_gw, gateway32, readbak); if (ecode != kxs_ec_success) return ecode;
ecode = storageConfig(); if (ecode != kxs_ec_success) return ecode;
return kxs_ec_success; }
xs_error_code_t Xsync::Basic_clearXsyncCameraSyncIndexCount() { uint32_t readbak = 0; return reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak); }
xs_error_code_t Xsync::doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms) { //
uint32_t readbak = 0; xs_error_code_t ecode; ecode = reg_write(reg::kstm32_action_val0, actionval, readbak); if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(reg::kstm32_action0, action, readbak, overtime_ms); if (ecode != kxs_ec_success) return ecode; if (ackreturn) *ackreturn = readbak; return ecode; }
xs_error_code_t Xsync::Basic_setGenlockFormat(GenlockFormat_t format) { DO_XSYNC(SigGenerator_setGenlockFormat(format)); return kxs_ec_success; } xs_error_code_t Xsync::Basic_getGenlockFormat(GenlockFormat_t &format) { DO_XSYNC(SigGenerator_getGenlockFormat(format)); return kxs_ec_success; } xs_error_code_t Xsync::Basic_setTimecodeFormat(TimecodeFormat_t format) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::kSigGenerator_timecode_format, format, readbak, 10)); DO_XSYNC(reg_write(reg::ktimecode_in_timecode_format, format, readbak, 10)); // DO_XSYNC(reg_write(reg::ktimecode_out_timecode_format, format, readbak, 10)); //readonly
return kxs_ec_success; } // xs_error_code_t Xsync::Basic_getTimecodeFormat(TimecodeFormat_t &format) {
// DO_XSYNC(SigGenerator_getTimecodeFormat(format));
// return kxs_ec_success;
// }
/*******************************************************************************
* TTLOutputModule * *******************************************************************************/ xs_error_code_t Xsync::TTLOutputModule_setInputSigType(int32_t index, ttlout_module::TriggerSigType_t source) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0;
if (index == 1) { regAdd = reg::kttlout1_input_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_input_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_input_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_input_sig_slt; } else { return kxs_ec_param_error; }
return reg_write(regAdd, source, readbak, 10); }
xs_error_code_t Xsync::TTLOutputModule_getInputSigType(int32_t index, ttlout_module::TriggerSigType_t &source) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0; if (index == 1) { regAdd = reg::kttlout1_input_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_input_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_input_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_input_sig_slt; } else { return kxs_ec_param_error; }
ecode = reg_read(regAdd, readbak, 10); if (ecode != kxs_ec_success) return ecode;
source = (ttlout_module::TriggerSigType_t)readbak; return ecode; }
xs_error_code_t Xsync::TTLOutputModule_setOutputSigType(int32_t index, ttlout_module::OutputSigType_t output_type) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0;
if (index == 1) { regAdd = reg::kttlout1_output_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_output_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_output_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_output_sig_slt; } else { return kxs_ec_param_error; }
return reg_write(regAdd, output_type, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getOutputSigType(int32_t index, ttlout_module::OutputSigType_t &output_type) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0;
if (index == 1) { regAdd = reg::kttlout1_output_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_output_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_output_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_output_sig_slt; } else { return kxs_ec_param_error; }
ecode = reg_read(regAdd, readbak, 10); if (ecode != kxs_ec_success) return ecode;
output_type = (ttlout_module::OutputSigType_t)readbak; return ecode; }
xs_error_code_t Xsync::TTLOutputModule_setTriggerModePulseWidth(int32_t index, uint32_t pulse_width_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0;
if (index == 1) { regAdd = reg::kttlout1_pulse_mode_duration; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_duration; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_duration; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_duration; } else { return kxs_ec_param_error; }
uint32_t pluse_width = pulse_width_ms * 1000; // 1MHZ计数
return reg_write(regAdd, pluse_width, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getTriggerModePulseWidth(int32_t index, uint32_t &pulse_width_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t regAdd = 0; uint32_t readbak = 0;
if (index == 1) { regAdd = reg::kttlout1_pulse_mode_duration; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_duration; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_duration; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_duration; } else { return kxs_ec_param_error; } ecode = reg_read(regAdd, regAdd, 10); if (ecode != kxs_ec_success) return ecode;
pulse_width_ms = readbak / 1000; return ecode; }
xs_error_code_t Xsync::TTLOutputModule_setTriggerModePulseDelay(int32_t index, uint32_t pulse_delay_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t regAdd = 0; uint32_t readbak = 0;
if (index == 1) { regAdd = reg::kttlout1_pulse_mode_delay; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_delay; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_delay; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_delay; } else { return kxs_ec_param_error; }
uint32_t pulse_delay = pulse_delay_ms * 1000; // 1MHZ计数
return reg_write(regAdd, pulse_delay, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getTriggerModePulseDelay(int32_t index, uint32_t &pulse_delay_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t regAdd = 0; uint32_t readbak = 0;
if (index == 1) { regAdd = reg::kttlout1_pulse_mode_delay; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_delay; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_delay; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_delay; } else { return kxs_ec_param_error; }
ecode = reg_read(regAdd, readbak, 10); if (ecode != kxs_ec_success) return ecode;
pulse_delay_ms = readbak / 1000; return ecode; } xs_error_code_t Xsync::SigGenerator_setControlMode(sig_generator_module::ControlMode_t mode) { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_ctl, mode, readbak, 10); } xs_error_code_t Xsync::SigGenerator_getControlMode(sig_generator_module::ControlMode_t &mode) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_ctl, readbak, 10); if (ecode != kxs_ec_success) return ecode; mode = (sig_generator_module::ControlMode_t)readbak; return ecode; } xs_error_code_t Xsync::SigGenerator_manualStart() { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_control_trigger_reg, 1, readbak, 10); } xs_error_code_t Xsync::SigGenerator_manualStop() { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_control_trigger_reg, 0, readbak, 10); } xs_error_code_t Xsync::SigGenerator_setTimecode(XsyncTimecode_t timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success;
Timecode64_t tc64 = timecodeTo64(timecode);
ecode = reg_write(reg::kSigGenerator_timecode0, tc64.tc0, readbak, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kSigGenerator_timecode1, tc64.tc1, readbak, 10); if (ecode != kxs_ec_success) return ecode;
return ecode; } xs_error_code_t Xsync::SigGenerator_getTimecode(XsyncTimecode_t &timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success;
uint32_t tc0 = 0; uint32_t tc1 = 0;
ecode = reg_read(reg::kSigGenerator_timecode0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::kSigGenerator_timecode1, tc1, 10); if (ecode != kxs_ec_success) return ecode;
Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1;
timecode = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::SigGenerator_setAutoStartTimecode(XsyncTimecode_t timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success;
Timecode64_t tc64 = timecodeTo64(timecode);
ecode = reg_write(reg::kSigGenerator_timecode_start0, tc64.tc0, readbak, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kSigGenerator_timecode_start1, tc64.tc1, readbak, 10); if (ecode != kxs_ec_success) return ecode;
return ecode; } xs_error_code_t Xsync::SigGenerator_getAutoStartTimecode(XsyncTimecode_t &timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success;
uint32_t tc0 = 0; uint32_t tc1 = 0;
ecode = reg_read(reg::kSigGenerator_timecode_start0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::kSigGenerator_timecode_start1, tc1, 10); if (ecode != kxs_ec_success) return ecode;
Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1;
timecode = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::SigGenerator_getWorkState(uint32_t &work_state) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_work_state, readbak, 10); if (ecode != kxs_ec_success) return ecode; work_state = readbak; return ecode; }
xs_error_code_t Xsync::SigGenerator_setGenlockFormat(GenlockFormat_t format) { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_genlock_format, format, readbak, 10); } xs_error_code_t Xsync::SigGenerator_getGenlockFormat(GenlockFormat_t &format) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_genlock_format, readbak, 10); if (ecode != kxs_ec_success) return ecode; format = (GenlockFormat_t)readbak; return ecode; } xs_error_code_t Xsync::SigGenerator_setTimecodeFormat(TimecodeFormat_t format) { return Basic_setTimecodeFormat(format); } xs_error_code_t Xsync::SigGenerator_getTimecodeFormat(TimecodeFormat_t &format) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_timecode_format, readbak, 10); if (ecode != kxs_ec_success) return ecode; format = (TimecodeFormat_t)readbak; return ecode; } xs_error_code_t Xsync::TimecodeOutputModule_setTimecodeSrcSelect(timecode_output_module::TriggerSigType_t timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_out_timecode_select, timecode_select, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getTimecodeSrcSelect(timecode_output_module::TriggerSigType_t &timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_out_timecode_select, readbak, 10)); timecode_select = (timecode_output_module::TriggerSigType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getTimecodeNow(XsyncTimecode_t &timecode_now) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success;
uint32_t tc0 = 0; uint32_t tc1 = 0;
ecode = reg_read(reg::ktimecode_out_timecode0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::ktimecode_out_timecode1, tc1, 10); if (ecode != kxs_ec_success) return ecode;
Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1;
timecode_now = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::TimecodeOutputModule_getTimecodeFormat(TimecodeFormat_t &timecode_format) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; ecode = reg_read(reg::ktimecode_out_timecode_format, readbak, 10); if (ecode != kxs_ec_success) return ecode; timecode_format = (TimecodeFormat_t)readbak; return ecode; } xs_error_code_t Xsync::TimecodeOutputModule_setBncOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_out_bnc_outut_level_select, level, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getBncOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_out_bnc_outut_level_select, readbak, 10)); level = (timecode_output_module::OutputSigLevelType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_setHeadphoneOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_out_headphone_outut_level_select, level, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getHeadphoneOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_out_headphone_outut_level_select, readbak, 10)); level = (timecode_output_module::OutputSigLevelType_t)readbak; return kxs_ec_success; }
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t sig) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::kcamera_sync_out_camera_sync_select, sig, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t &sig) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kcamera_sync_out_camera_sync_select, readbak, 10)); sig = (camera_sync_packet_generator_module::TriggerSigType_t)readbak; return kxs_ec_success; }
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setReportPeriod(uint32_t packetNum) { uint32_t readbak = 0; if (packetNum == 0) packetNum = 1; DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count_report_period, packetNum, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getReportPeriod(uint32_t &packetNum) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count_report_period, readbak, 10)); packetNum = readbak; return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getPacketIndex(uint32_t &index) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count, readbak, 10)); index = readbak; return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_clearPacketIndex() { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_setSrcSelect(timecode_input_module::TriggerSigType_t timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_in_timecode_sig_selt, timecode_select, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_getSrcSelect(timecode_input_module::TriggerSigType_t &timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_in_timecode_sig_selt, readbak, 10)); timecode_select = (timecode_input_module::TriggerSigType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_setTimecodeFormat(TimecodeFormat_t format) { return Basic_setTimecodeFormat(format); } xs_error_code_t Xsync::TimecodeInputModule_getTimecodeFormat(TimecodeFormat_t &format) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_in_timecode_format, readbak, 10)); format = (TimecodeFormat_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_getTimecode(XsyncTimecode_t &timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success;
uint32_t tc0 = 0; uint32_t tc1 = 0;
ecode = reg_read(reg::ktimecode_in_timecode0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::ktimecode_in_timecode1, tc1, 10); if (ecode != kxs_ec_success) return ecode;
Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1;
timecode = timecode64ToXsyncTimeCode(tc64);
return ecode; }
#define FREQ_CNT_TO_FREQ(cnt) ((cnt != 0) ? (uint32_t)(1.0 / (cnt * 1.0 / (10 * 1000 * 1000)) + 0.5) : 0 ) //+0.5是因为c++ 小数强转成整数时是取整,而非四舍五入
/**
* @brief 读取TTL输入模块的频率 * * @param index * @param freq * @return xs_error_code_t */ xs_error_code_t Xsync::TTLInputModule1_detectFreq(uint32_t &freq) { uint32_t freq_cnt = 0; DO_XSYNC(reg_read(reg::k_ttlin1_freq_detector_reg, freq_cnt, 10)); if (freq_cnt == 0) { freq = 0; } freq = FREQ_CNT_TO_FREQ(freq_cnt); return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule2_detectFreq(uint32_t &freq) { uint32_t freq_cnt = 0; DO_XSYNC(reg_read(reg::k_ttlin2_freq_detector_reg, freq_cnt, 10)); freq = FREQ_CNT_TO_FREQ(freq_cnt); return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule3_detectFreq(uint32_t &freq) { uint32_t freq_cnt = 0; DO_XSYNC(reg_read(reg::k_ttlin3_freq_detector_reg, freq_cnt, 10)); freq = FREQ_CNT_TO_FREQ(freq_cnt); return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule4_detectFreq(uint32_t &freq) { uint32_t freq_cnt = 0; DO_XSYNC(reg_read(reg::k_ttlin4_freq_detector_reg, freq_cnt, 10)); freq = FREQ_CNT_TO_FREQ(freq_cnt); return kxs_ec_success; }
|