You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

872 lines
35 KiB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
1 year ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
  1. #include "xsync.hpp"
  2. #include <string.h>
  3. #include <map>
  4. #define ENABLE_LOG
  5. #ifdef ENABLE_LOG
  6. #include "../src/logger.hpp"
  7. #endif
  8. #define TAG "XSYNC"
  9. using namespace xsync;
  10. using namespace std;
  11. /**
  12. * @brief XSYNC协议端口
  13. */
  14. #define IFLYTOP_XSYNC_SERVICE_XSYNC_PORT 19900 // xsync端端口
  15. #define IFLYTOP_XSYNC_SERVICE_PC_PORT 19901 // pc 端端口
  16. #define IFLYTOP_XSYNC_TIMECODE_REPORT_XSYNC_PORT 19902 // xsync端端口
  17. #define IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT 19903 // pc端端口
  18. #define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_XSYNC_PORT 13013 // xsync端端口
  19. #define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT 13014 // pc端端口
  20. #define DO_XSYNC(exptr) \
  21. { \
  22. xs_error_code_t ecode = exptr; \
  23. if (ecode != kxs_ec_success) return ecode; \
  24. }
  25. #define REG_WRITE(reg, value) \
  26. { \
  27. DO_XSYNC(reg_write(reg, value, 10)); \
  28. return kxs_ec_success; \
  29. }
  30. #define REG_READ(reg, value) \
  31. { \
  32. uint32_t readbak = 0; \
  33. DO_XSYNC(reg_read(reg, readbak, 10)); \
  34. value = (decltype(value))readbak; \
  35. return kxs_ec_success; \
  36. }
  37. static uint32_t ipToUint32(const std::string &ipAddress, bool &suc) {
  38. uint32_t result = 0;
  39. std::istringstream iss(ipAddress);
  40. std::string segment;
  41. int i = 0;
  42. while (std::getline(iss, segment, '.')) {
  43. uint32_t octet = std::stoi(segment);
  44. if (octet > 255) {
  45. suc = false;
  46. return 0;
  47. }
  48. result |= (octet << ((3 - i) * 8));
  49. i++;
  50. }
  51. if (i != 4) {
  52. suc = false;
  53. return 0;
  54. }
  55. suc = true;
  56. uint32_t result_n = 0;
  57. result_n |= ((result & 0xff000000) >> 24);
  58. result_n |= ((result & 0x00ff0000) >> 8);
  59. result_n |= ((result & 0x0000ff00) << 8);
  60. result_n |= ((result & 0x000000ff) << 24);
  61. return result_n;
  62. }
  63. namespace xsync {
  64. namespace sig_generator_module {
  65. static map<string, ControlMode_t> Str2ControlModeMap = {
  66. {"manualTrigger", kControlMode_manualTrigger}, //
  67. {"extTimecodeTrigger", kControlMode_externalTimecodeTrigger},
  68. {"ttl1Trigger", kControlMode_externalTTL1Trigger},
  69. {"ttl2Trigger", kControlMode_externalTTL2Trigger},
  70. {"ttl3Trigger", kControlMode_externalTTL3Trigger},
  71. {"ttl4Trigger", kControlMode_externalTTL4Trigger},
  72. };
  73. string ControlMode2Str(ControlMode_t mode) {
  74. for (auto &item : Str2ControlModeMap) {
  75. if (item.second == mode) return item.first;
  76. }
  77. return "unkown";
  78. }
  79. ControlMode_t Str2ControlMode(string mode) {
  80. auto it = Str2ControlModeMap.find(mode);
  81. if (it != Str2ControlModeMap.end()) {
  82. return it->second;
  83. }
  84. return kControlMode_manualTrigger;
  85. }
  86. list<string> ControlModeStrSet() {
  87. list<string> ret;
  88. for (auto &item : Str2ControlModeMap) {
  89. ret.push_back(item.first);
  90. }
  91. return ret;
  92. }
  93. } // namespace sig_generator_module
  94. namespace timecode_output_module {
  95. static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = {
  96. {"off", koff}, //
  97. {"ext_timecode_sig", kext_timecode_sig},
  98. {"internal_timecode_sig", kinternal_timecode_sig},
  99. };
  100. string TriggerSigType2Str(TriggerSigType_t type) {
  101. for (auto &item : Str2TriggerSigTypeMap) {
  102. if (item.second == type) return item.first;
  103. }
  104. return "unkown";
  105. }
  106. TriggerSigType_t Str2TriggerSigType(string type) {
  107. auto it = Str2TriggerSigTypeMap.find(type);
  108. if (it != Str2TriggerSigTypeMap.end()) {
  109. return it->second;
  110. }
  111. return koff;
  112. }
  113. list<string> TriggerSigTypeStrSet() {
  114. list<string> ret;
  115. for (auto &item : Str2TriggerSigTypeMap) {
  116. ret.push_back(item.first);
  117. }
  118. return ret;
  119. }
  120. static map<string, OutputSigLevelType_t> Str2OutputSigLevelTypeMap = {
  121. {"line", kline}, //
  122. {"mic", kmic},
  123. };
  124. string OutputSigLevelType2Str(OutputSigLevelType_t type) {
  125. for (auto &item : Str2OutputSigLevelTypeMap) {
  126. if (item.second == type) return item.first;
  127. }
  128. return "unkown";
  129. }
  130. OutputSigLevelType_t Str2OutputSigLevelType(string type) {
  131. auto it = Str2OutputSigLevelTypeMap.find(type);
  132. if (it != Str2OutputSigLevelTypeMap.end()) {
  133. return it->second;
  134. }
  135. return kline;
  136. }
  137. list<string> OutputSigLevelTypeStrSet() {
  138. list<string> ret;
  139. for (auto &item : Str2OutputSigLevelTypeMap) {
  140. ret.push_back(item.first);
  141. }
  142. return ret;
  143. }
  144. } // namespace timecode_output_module
  145. namespace camera_sync_packet_generator_module {
  146. static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = {
  147. {"off", koff}, //
  148. {"internal_genlock_sig", kinternal_genlock_sig},
  149. {"ext_genlock_sig", kext_genlock_sig},
  150. };
  151. string TriggerSigType2Str(TriggerSigType_t type) {
  152. for (auto &item : Str2TriggerSigTypeMap) {
  153. if (item.second == type) return item.first;
  154. }
  155. return "unkown";
  156. }
  157. TriggerSigType_t Str2TriggerSigType(string type) {
  158. auto it = Str2TriggerSigTypeMap.find(type);
  159. if (it != Str2TriggerSigTypeMap.end()) {
  160. return it->second;
  161. }
  162. return koff;
  163. }
  164. list<string> TriggerSigTypeStrSet() {
  165. list<string> ret;
  166. for (auto &item : Str2TriggerSigTypeMap) {
  167. ret.push_back(item.first);
  168. }
  169. return ret;
  170. }
  171. } // namespace camera_sync_packet_generator_module
  172. namespace timecode_input_module {
  173. static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = {
  174. {"off", koff}, //
  175. {"bnc_timecode", kbnc_timecode},
  176. {"headphone_timecode", kheadphone_timecode},
  177. };
  178. string TriggerSigType2Str(TriggerSigType_t type) {
  179. for (auto &item : Str2TriggerSigTypeMap) {
  180. if (item.second == type) return item.first;
  181. }
  182. return "unkown";
  183. }
  184. TriggerSigType_t Str2TriggerSigType(string type) {
  185. auto it = Str2TriggerSigTypeMap.find(type);
  186. if (it != Str2TriggerSigTypeMap.end()) {
  187. return it->second;
  188. }
  189. return koff;
  190. }
  191. list<string> TriggerSigTypeStrSet() {
  192. list<string> ret;
  193. for (auto &item : Str2TriggerSigTypeMap) {
  194. ret.push_back(item.first);
  195. }
  196. return ret;
  197. }
  198. } // namespace timecode_input_module
  199. } // namespace xsync
  200. static XsyncTimecode_t timecode64ToXsyncTimeCode(Timecode64_t tc64) {
  201. uint8_t frameuints = tc64.tc0 & 0x0f;
  202. uint8_t frame10s = (tc64.tc0 >> 8) & 0x3;
  203. uint8_t seconduints = (tc64.tc0 >> 16) & 0x0f;
  204. uint8_t second10s = (tc64.tc0 >> 24) & 0x07;
  205. uint8_t minuteuints = tc64.tc1 & 0x0f;
  206. uint8_t minute10s = (tc64.tc1 >> 8) & 0x07;
  207. uint8_t houruints = (tc64.tc1 >> 16) & 0x0f;
  208. uint8_t hour10s = (tc64.tc1 >> 24) & 0x03;
  209. XsyncTimecode_t timecode;
  210. timecode.hour = hour10s * 10 + houruints;
  211. timecode.minute = minute10s * 10 + minuteuints;
  212. timecode.second = second10s * 10 + seconduints;
  213. timecode.frame = frame10s * 10 + frameuints;
  214. return timecode;
  215. }
  216. static Timecode64_t timecodeTo64(XsyncTimecode_t tc) {
  217. Timecode64_t tc64;
  218. uint32_t frameuints = tc.frame % 10;
  219. uint32_t frame10s = tc.frame / 10;
  220. uint32_t seconduints = tc.second % 10;
  221. uint32_t second10s = tc.second / 10;
  222. uint32_t minuteuints = tc.minute % 10;
  223. uint32_t minute10s = tc.minute / 10;
  224. uint32_t houruints = tc.hour % 10;
  225. uint32_t hour10s = tc.hour / 10;
  226. tc64.tc0 = frameuints + (frame10s << 8) + (seconduints << 16) + (second10s << 24);
  227. tc64.tc1 = minuteuints + (minute10s << 8) + (houruints << 16) + (hour10s << 24);
  228. return tc64;
  229. }
  230. /*******************************************************************************
  231. * Xsync *
  232. *******************************************************************************/
  233. Xsync::Xsync(/* args */) {}
  234. Xsync &Xsync::Ins() {
  235. static Xsync xsync;
  236. return xsync;
  237. }
  238. void Xsync::initialize(I_XSUDPFactory *xsync_udp_factory) { m_xsync_udp_factory = xsync_udp_factory; }
  239. xs_error_code_t Xsync::connect(string xsync_ip) {
  240. lock_guard<recursive_mutex> lock(lock_);
  241. m_xsync_ip = xsync_ip;
  242. disConnect();
  243. /**
  244. * @brief m_xsync_reg_udp
  245. */
  246. xs_error_code_t ecode = kxs_ec_success;
  247. auto xsync_reg_udp = m_xsync_udp_factory->createXSUDP();
  248. ecode = xsync_reg_udp->initialize("0.0.0.0", IFLYTOP_XSYNC_SERVICE_PC_PORT);
  249. if (ecode != kxs_ec_success) {
  250. return ecode;
  251. }
  252. /**
  253. * @brief m_xsync_timecode_udp_listener
  254. */
  255. auto xsync_timecode_udp_listener = m_xsync_udp_factory->createXSUDP();
  256. ecode = xsync_timecode_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT);
  257. if (ecode != kxs_ec_success) {
  258. return ecode;
  259. }
  260. ecode = xsync_timecode_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseTimecodeMsgAndReport(from, data, length); });
  261. if (ecode != kxs_ec_success) {
  262. return ecode;
  263. }
  264. /**
  265. * @brief m_xsync_camera_sync_udp_listener
  266. */
  267. auto xsync_camera_sync_udp_listener = m_xsync_udp_factory->createXSUDP();
  268. ecode = xsync_camera_sync_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT);
  269. if (ecode != kxs_ec_success) {
  270. return ecode;
  271. }
  272. ecode = xsync_camera_sync_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseCameraSyncMsgAndReport(from, data, length); });
  273. if (ecode != kxs_ec_success) {
  274. return ecode;
  275. }
  276. m_xsync_reg_udp = xsync_reg_udp;
  277. m_xsync_timecode_udp_listener = xsync_timecode_udp_listener;
  278. m_xsync_camera_sync_udp_listener = xsync_camera_sync_udp_listener;
  279. m_net_state = kxsync_net_state_connected;
  280. return ecode;
  281. }
  282. xs_error_code_t Xsync::disConnect() {
  283. lock_guard<recursive_mutex> lock(lock_);
  284. if (m_xsync_reg_udp != nullptr) {
  285. m_xsync_reg_udp->stopReceive();
  286. m_xsync_reg_udp = nullptr;
  287. }
  288. if (m_xsync_timecode_udp_listener != nullptr) {
  289. m_xsync_timecode_udp_listener->stopReceive();
  290. m_xsync_timecode_udp_listener = nullptr;
  291. }
  292. if (m_xsync_camera_sync_udp_listener != nullptr) {
  293. m_xsync_camera_sync_udp_listener->stopReceive();
  294. m_xsync_camera_sync_udp_listener = nullptr;
  295. }
  296. m_net_state = kxsync_net_state_disconnect;
  297. return kxs_ec_success;
  298. }
  299. xsync_net_state_t Xsync::getNetState() { return m_net_state; }
  300. void Xsync::Basic_registerOnTimecodeMsgCallback(xsync_on_timecode_msg_t on_timecode_msg_cb) { m_on_timecode_msg_cb = on_timecode_msg_cb; }
  301. void Xsync::Basic_registerOnCameraSyncMsgCallback(xsync_on_camera_sync_msg_t on_camera_sync_msg_cb) { m_on_camera_sync_msg_cb = on_camera_sync_msg_cb; }
  302. void Xsync::Basic_registerOnWorkstateChangeMsgCallback(xsync_on_workstate_change_msg_t on_workstate_change_msg_cb) { m_on_workstate_change_msg_cb = on_workstate_change_msg_cb; }
  303. xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) {
  304. lock_guard<recursive_mutex> lock(lock_);
  305. if (!m_xsync_reg_udp) return kxs_ec_lose_connect;
  306. m_xsync_reg_udp->clearRxBuffer();
  307. cmd->index = txpacket_index++;
  308. XsyncNetAdd toadd = {m_xsync_ip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT};
  309. xs_error_code_t ecode = //
  310. m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr);
  311. if (ecode != kxs_ec_success) {
  312. return ecode;
  313. }
  314. XsyncNetAdd fromadd;
  315. while (true) {
  316. // ZLOGI(TAG, "start rx wait for rxdata");
  317. ecode = m_xsync_reg_udp->receive((char *)rx_data, buffersize, fromadd, overtime_ms);
  318. // ZLOGI(TAG, "end rx wait for rxdata");
  319. if (ecode != kxs_ec_success) {
  320. return ecode;
  321. }
  322. if (rx_data->index != cmd->index) {
  323. // ZLOGI(TAG, "packet index error %d %d", cmd->index, rx_data->index);
  324. continue;
  325. }
  326. break;
  327. }
  328. return (xs_error_code_t)rx_data->data[0];
  329. }
  330. xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, int32_t overtime_ms) { //
  331. uint32_t readbak = 0;
  332. return reg_write(regadd, regvalue, readbak, overtime_ms);
  333. }
  334. xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms) {
  335. /**
  336. * @brief
  337. *
  338. *
  339. * kxsync_packet_type_reg_write
  340. * tx: regadd,regdata
  341. * rx: ecode,regdata
  342. */
  343. uint8_t txdata[128] = {0};
  344. uint8_t rxdata[128] = {0};
  345. iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
  346. iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
  347. txpacket->type = kxsync_packet_type_cmd;
  348. txpacket->index = txpacket_index++;
  349. txpacket->cmd = kxsync_packet_type_reg_write;
  350. txpacket->ndata = 2;
  351. txpacket->data[0] = regadd;
  352. txpacket->data[1] = regvalue;
  353. auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
  354. if (ecode != kxs_ec_success) {
  355. return ecode;
  356. }
  357. regbackvalue = rxpacket->data[1];
  358. return ecode;
  359. }
  360. xs_error_code_t Xsync::reg_read(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms) {
  361. /**
  362. * @brief
  363. *
  364. *
  365. * kxsync_packet_type_reg_write
  366. * tx: regadd,regdata
  367. * rx: ecode,regdata
  368. */
  369. uint8_t txdata[128] = {0};
  370. uint8_t rxdata[128] = {0};
  371. iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
  372. iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
  373. txpacket->type = kxsync_packet_type_cmd;
  374. txpacket->index = txpacket_index++;
  375. txpacket->cmd = kxsync_packet_type_reg_read;
  376. txpacket->ndata = 2;
  377. txpacket->data[0] = regadd;
  378. txpacket->data[1] = regvalue;
  379. auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
  380. if (ecode != kxs_ec_success) {
  381. return ecode;
  382. }
  383. regvalue = rxpacket->data[1];
  384. return ecode;
  385. }
  386. xs_error_code_t Xsync::reg_read_muti(uint32_t regadd, uint32_t nreg, vector<uint32_t> &regvalues, int32_t overtime_ms) {
  387. /**
  388. * @brief
  389. *
  390. *
  391. * kxsync_packet_type_reg_read_regs
  392. * tx: regstartadd,nreg
  393. * rx: ecode,regdatas
  394. */
  395. uint8_t txdata[128] = {0};
  396. uint8_t rxdata[1280] = {0};
  397. iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
  398. iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
  399. txpacket->type = kxsync_packet_type_cmd;
  400. txpacket->index = txpacket_index++;
  401. txpacket->cmd = kxsync_packet_type_reg_read_regs;
  402. txpacket->ndata = 2;
  403. txpacket->data[0] = regadd;
  404. txpacket->data[1] = nreg;
  405. auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
  406. if (ecode != kxs_ec_success) {
  407. return ecode;
  408. }
  409. if (rxpacket->ndata > 0) {
  410. for (int i = 0; i < rxpacket->ndata - 1; i++) {
  411. regvalues.push_back(rxpacket->data[i + 1]);
  412. }
  413. }
  414. return ecode;
  415. }
  416. xs_error_code_t Xsync::readtimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t &timecode) {
  417. uint32_t readbak = 0;
  418. xs_error_code_t ecode = kxs_ec_success;
  419. uint32_t tc0 = 0;
  420. uint32_t tc1 = 0;
  421. ecode = reg_read(reg0, tc0, 10);
  422. if (ecode != kxs_ec_success) return ecode;
  423. ecode = reg_read(reg1, tc1, 10);
  424. if (ecode != kxs_ec_success) return ecode;
  425. Timecode64_t tc64;
  426. tc64.tc0 = tc0;
  427. tc64.tc1 = tc1;
  428. timecode = timecode64ToXsyncTimeCode(tc64);
  429. return ecode;
  430. }
  431. xs_error_code_t Xsync::writetimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t timecode) {
  432. uint32_t readbak = 0;
  433. xs_error_code_t ecode = kxs_ec_success;
  434. Timecode64_t tc64 = timecodeTo64(timecode);
  435. ecode = reg_write(reg0, tc64.tc0, readbak, 10);
  436. if (ecode != kxs_ec_success) return ecode;
  437. ecode = reg_write(reg1, tc64.tc1, readbak, 10);
  438. if (ecode != kxs_ec_success) return ecode;
  439. return ecode;
  440. }
  441. xs_error_code_t Xsync::readfreq(uint32_t reg, float &freqfloat) {
  442. uint32_t freq_cnt = 0;
  443. DO_XSYNC(reg_read(reg, freq_cnt));
  444. if (freq_cnt == 0) {
  445. freqfloat = 0;
  446. }
  447. if (freq_cnt != 0) {
  448. uint32_t freq_1000x = ((1.0 / (freq_cnt * 1.0 / (10 * 1000 * 1000))) * 1000 + 0.5); //+0.5是因为c++ 小数强转成整数时是取整,而非四舍五入
  449. // ZLOGI(TAG, "freq_10x %f", freq_10x);
  450. freqfloat = freq_1000x / 1000.0;
  451. } else {
  452. freqfloat = 0;
  453. }
  454. return kxs_ec_success;
  455. }
  456. void Xsync::parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
  457. iflytop_xsync_event_report_packet_t *packet = (iflytop_xsync_event_report_packet_t *)data;
  458. if (packet->eventid == ktimecode_report_event) {
  459. Timecode64_t tc64;
  460. tc64.tc0 = packet->data[0];
  461. tc64.tc1 = packet->data[1];
  462. XsyncTimecode_t timecode = timecode64ToXsyncTimeCode(tc64);
  463. if (m_on_timecode_msg_cb) m_on_timecode_msg_cb(&timecode);
  464. } else if (packet->eventid == kxsync_work_state_report_event) {
  465. // 信号发生器状态改变
  466. if (m_on_workstate_change_msg_cb) m_on_workstate_change_msg_cb(packet->data[0]);
  467. }
  468. }
  469. void Xsync::parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
  470. uint32_t count = 0;
  471. uint32_t data0 = data[7];
  472. uint32_t data1 = data[6];
  473. uint32_t data2 = data[5];
  474. uint32_t data3 = data[4];
  475. count = data0 + (data1 << 8) + (data2 << 16) + (data3 << 24);
  476. xysnc_camera_sync_data_t camera_sync_data;
  477. camera_sync_data.frameIndex = count;
  478. if (m_on_camera_sync_msg_cb) m_on_camera_sync_msg_cb(&camera_sync_data);
  479. }
  480. xs_error_code_t Xsync::Basic_generatorNewMac() { return doaction(xsync_stm32_action_generator_new_mac, 0, nullptr, 2000); }
  481. xs_error_code_t Xsync::Basic_factoryReset() { return doaction(xsync_stm32_action_factory_reset, 0, nullptr, 1000); }
  482. xs_error_code_t Xsync::Basic_reboot() { return doaction(xsync_stm32_action_Basic_reboot, 0, nullptr); }
  483. xs_error_code_t Xsync::storageConfig() { return doaction(xsync_stm32_action_storage_cfg, 0, nullptr, 1000); }
  484. xs_error_code_t Xsync::Basic_changeNetworkConfig(string ip, string mask, string gateway) {
  485. uint32_t ip32 = 0;
  486. uint32_t mask32 = 0;
  487. uint32_t gateway32 = 0;
  488. xs_error_code_t ecode;
  489. bool suc = false;
  490. ip32 = (uint32_t)ipToUint32(ip.c_str(), suc);
  491. if (!suc) return kxs_ec_param_error;
  492. mask32 = (uint32_t)ipToUint32(mask.c_str(), suc);
  493. if (!suc) return kxs_ec_param_error;
  494. gateway32 = (uint32_t)ipToUint32(gateway.c_str(), suc);
  495. if (!suc) return kxs_ec_param_error;
  496. uint32_t readbak = 0;
  497. ecode = reg_write(reg::kstm32_ip, ip32, readbak);
  498. if (ecode != kxs_ec_success) return ecode;
  499. ecode = reg_write(reg::kstm32_netmask, mask32, readbak);
  500. if (ecode != kxs_ec_success) return ecode;
  501. ecode = reg_write(reg::kstm32_gw, gateway32, readbak);
  502. if (ecode != kxs_ec_success) return ecode;
  503. ecode = storageConfig();
  504. if (ecode != kxs_ec_success) return ecode;
  505. return kxs_ec_success;
  506. }
  507. xs_error_code_t Xsync::Basic_clearXsyncCameraSyncIndexCount() {
  508. uint32_t readbak = 0;
  509. return reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak);
  510. }
  511. xs_error_code_t Xsync::doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms) {
  512. //
  513. uint32_t readbak = 0;
  514. xs_error_code_t ecode;
  515. ecode = reg_write(reg::kstm32_action_val0, actionval, readbak);
  516. if (ecode != kxs_ec_success) return ecode;
  517. ecode = reg_write(reg::kstm32_action0, action, readbak, overtime_ms);
  518. if (ecode != kxs_ec_success) return ecode;
  519. if (ackreturn) *ackreturn = readbak;
  520. return ecode;
  521. }
  522. // xs_error_code_t Xsync::Basic_setGenlockFormat(GenlockFormat_t format) {
  523. // DO_XSYNC(SigGenerator_setGenlockFormat(format));
  524. // return kxs_ec_success;
  525. // }
  526. // xs_error_code_t Xsync::Basic_getGenlockFormat(GenlockFormat_t &format) {
  527. // DO_XSYNC(SigGenerator_getGenlockFormat(format));
  528. // return kxs_ec_success;
  529. // }
  530. // xs_error_code_t Xsync::Basic_setTimecodeFormat(TimecodeFormat_t format) {
  531. // uint32_t readbak = 0;
  532. // return kxs_ec_success;
  533. // }
  534. xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t sig) {
  535. uint32_t readbak = 0;
  536. DO_XSYNC(reg_write(reg::kcamera_sync_out_camera_sync_select, sig, readbak, 10));
  537. return kxs_ec_success;
  538. }
  539. xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t &sig) {
  540. uint32_t readbak = 0;
  541. DO_XSYNC(reg_read(reg::kcamera_sync_out_camera_sync_select, readbak, 10));
  542. sig = (camera_sync_packet_generator_module::TriggerSigType_t)readbak;
  543. return kxs_ec_success;
  544. }
  545. xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setReportPeriod(uint32_t packetNum) {
  546. uint32_t readbak = 0;
  547. if (packetNum == 0) packetNum = 1;
  548. DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count_report_period, packetNum, readbak, 10));
  549. return kxs_ec_success;
  550. }
  551. xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getReportPeriod(uint32_t &packetNum) {
  552. uint32_t readbak = 0;
  553. DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count_report_period, readbak, 10));
  554. packetNum = readbak;
  555. return kxs_ec_success;
  556. }
  557. xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getPacketIndex(uint32_t &index) {
  558. uint32_t readbak = 0;
  559. DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count, readbak, 10));
  560. index = readbak;
  561. return kxs_ec_success;
  562. }
  563. xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_clearPacketIndex() {
  564. uint32_t readbak = 0;
  565. DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak, 10));
  566. return kxs_ec_success;
  567. }
  568. /*******************************************************************************
  569. * *
  570. *******************************************************************************/
  571. /*******************************************************************************
  572. * TTLInputModule *
  573. *******************************************************************************/
  574. #define FREQ_CNT_TO_FREQ(cnt) ((cnt != 0) ? (uint32_t)(1.0 / (cnt * 1.0 / (10 * 1000 * 1000)) + 0.5) : 0) //+0.5是因为c++ 小数强转成整数时是取整,而非四舍五入
  575. xs_error_code_t Xsync::TTLInputModule1_detectFreq(uint32_t &freq) {
  576. uint32_t freq_cnt = 0;
  577. DO_XSYNC(reg_read(reg::k_ttlin1_freq_detector_reg, freq_cnt, 10));
  578. if (freq_cnt == 0) {
  579. freq = 0;
  580. }
  581. freq = FREQ_CNT_TO_FREQ(freq_cnt);
  582. return kxs_ec_success;
  583. }
  584. xs_error_code_t Xsync::TTLInputModule2_detectFreq(uint32_t &freq) {
  585. uint32_t freq_cnt = 0;
  586. DO_XSYNC(reg_read(reg::k_ttlin2_freq_detector_reg, freq_cnt, 10));
  587. freq = FREQ_CNT_TO_FREQ(freq_cnt);
  588. return kxs_ec_success;
  589. }
  590. xs_error_code_t Xsync::TTLInputModule3_detectFreq(uint32_t &freq) {
  591. uint32_t freq_cnt = 0;
  592. DO_XSYNC(reg_read(reg::k_ttlin3_freq_detector_reg, freq_cnt, 10));
  593. freq = FREQ_CNT_TO_FREQ(freq_cnt);
  594. return kxs_ec_success;
  595. }
  596. xs_error_code_t Xsync::TTLInputModule4_detectFreq(uint32_t &freq) {
  597. uint32_t freq_cnt = 0;
  598. DO_XSYNC(reg_read(reg::k_ttlin4_freq_detector_reg, freq_cnt, 10));
  599. freq = FREQ_CNT_TO_FREQ(freq_cnt);
  600. return kxs_ec_success;
  601. }
  602. /*******************************************************************************
  603. * TTLOutputModule *
  604. *******************************************************************************/
  605. // 0:固定输出低电平,1:固定输出高电平,2:分频倍频模式,3:转发模式,4:测试模式
  606. xs_error_code_t Xsync::TTLOutputModule1_setSrcSigType(SignalType_t source) {
  607. if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
  608. DO_XSYNC(reg_write(reg::kreg_ttlout1_signal_process_mode, 2, 10)); // 分频倍频模式
  609. } else {
  610. DO_XSYNC(reg_write(reg::kreg_ttlout1_signal_process_mode, 3, 10)); // 转发模式
  611. }
  612. REG_WRITE(reg::kreg_ttlout1_input_signal_select, source);
  613. }
  614. xs_error_code_t Xsync::TTLOutputModule2_setSrcSigType(SignalType_t source) {
  615. if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
  616. DO_XSYNC(reg_write(reg::kreg_ttlout2_signal_process_mode, 2, 10)); // 分频倍频模式
  617. } else {
  618. DO_XSYNC(reg_write(reg::kreg_ttlout2_signal_process_mode, 3, 10)); // 转发模式
  619. }
  620. REG_WRITE(reg::kreg_ttlout2_input_signal_select, source);
  621. }
  622. xs_error_code_t Xsync::TTLOutputModule3_setSrcSigType(SignalType_t source) {
  623. if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
  624. DO_XSYNC(reg_write(reg::kreg_ttlout3_signal_process_mode, 2, 10)); // 分频倍频模式
  625. } else {
  626. DO_XSYNC(reg_write(reg::kreg_ttlout3_signal_process_mode, 3, 10)); // 转发模式
  627. }
  628. REG_WRITE(reg::kreg_ttlout3_input_signal_select, source);
  629. }
  630. xs_error_code_t Xsync::TTLOutputModule4_setSrcSigType(SignalType_t source) {
  631. if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
  632. DO_XSYNC(reg_write(reg::kreg_ttlout4_signal_process_mode, 2, 10)); // 分频倍频模式
  633. } else {
  634. DO_XSYNC(reg_write(reg::kreg_ttlout4_signal_process_mode, 3, 10)); // 转发模式
  635. }
  636. REG_WRITE(reg::kreg_ttlout4_input_signal_select, source);
  637. }
  638. xs_error_code_t Xsync::TTLOutputModule1_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout1_input_signal_select, source); }
  639. xs_error_code_t Xsync::TTLOutputModule2_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout2_input_signal_select, source); }
  640. xs_error_code_t Xsync::TTLOutputModule3_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout3_input_signal_select, source); }
  641. xs_error_code_t Xsync::TTLOutputModule4_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout4_input_signal_select, source); }
  642. xs_error_code_t Xsync::TTLOutputModule1_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout1_pllout_freq_division_ctrl, div); }
  643. xs_error_code_t Xsync::TTLOutputModule2_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout2_pllout_freq_division_ctrl, div); }
  644. xs_error_code_t Xsync::TTLOutputModule3_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout3_pllout_freq_division_ctrl, div); }
  645. xs_error_code_t Xsync::TTLOutputModule4_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout4_pllout_freq_division_ctrl, div); }
  646. xs_error_code_t Xsync::TTLOutputModule1_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout1_pllout_freq_division_ctrl, div); }
  647. xs_error_code_t Xsync::TTLOutputModule2_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout2_pllout_freq_division_ctrl, div); }
  648. xs_error_code_t Xsync::TTLOutputModule3_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout3_pllout_freq_division_ctrl, div); }
  649. xs_error_code_t Xsync::TTLOutputModule4_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout4_pllout_freq_division_ctrl, div); }
  650. xs_error_code_t Xsync::TTLOutputModule1_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout1_pllout_freq_multiplication_ctrl, multi); }
  651. xs_error_code_t Xsync::TTLOutputModule2_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout2_pllout_freq_multiplication_ctrl, multi); }
  652. xs_error_code_t Xsync::TTLOutputModule3_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout3_pllout_freq_multiplication_ctrl, multi); }
  653. xs_error_code_t Xsync::TTLOutputModule4_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout4_pllout_freq_multiplication_ctrl, multi); }
  654. xs_error_code_t Xsync::TTLOutputModule1_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout1_pllout_freq_multiplication_ctrl, multi); }
  655. xs_error_code_t Xsync::TTLOutputModule2_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout2_pllout_freq_multiplication_ctrl, multi); }
  656. xs_error_code_t Xsync::TTLOutputModule3_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout3_pllout_freq_multiplication_ctrl, multi); }
  657. xs_error_code_t Xsync::TTLOutputModule4_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout4_pllout_freq_multiplication_ctrl, multi); }
  658. xs_error_code_t Xsync::TTLOutputModule1_readInFreq(float &freq) { return readfreq(reg::kreg_ttlout1_sig_in_freq_detect, freq); }
  659. xs_error_code_t Xsync::TTLOutputModule2_readInFreq(float &freq) { return readfreq(reg::kreg_ttlout2_sig_in_freq_detect, freq); }
  660. xs_error_code_t Xsync::TTLOutputModule3_readInFreq(float &freq) { return readfreq(reg::kreg_ttlout3_sig_in_freq_detect, freq); }
  661. xs_error_code_t Xsync::TTLOutputModule4_readInFreq(float &freq) { return readfreq(reg::kreg_ttlout4_sig_in_freq_detect, freq); }
  662. xs_error_code_t Xsync::TTLOutputModule1_readOutFreq(float &freq) { return readfreq(reg::kreg_ttlout1_sig_out_freq_detect, freq); }
  663. xs_error_code_t Xsync::TTLOutputModule2_readOutFreq(float &freq) { return readfreq(reg::kreg_ttlout2_sig_out_freq_detect, freq); }
  664. xs_error_code_t Xsync::TTLOutputModule3_readOutFreq(float &freq) { return readfreq(reg::kreg_ttlout3_sig_out_freq_detect, freq); }
  665. xs_error_code_t Xsync::TTLOutputModule4_readOutFreq(float &freq) { return readfreq(reg::kreg_ttlout4_sig_out_freq_detect, freq); }
  666. /*******************************************************************************
  667. * TimecodeInputModule *
  668. *******************************************************************************/
  669. xs_error_code_t Xsync::ExternalTimecode_setSource(InputInterface_t src) {
  670. if (src == INPUT_IF_TIMECODE_BNC) {
  671. DO_XSYNC(reg_write(reg::external_timecode_sig_selt, 1, 10)); // 0:off,1:bnc,2:headphone
  672. } else if (src == INPUT_IF_TIMECODE_HEADPHONE) {
  673. DO_XSYNC(reg_write(reg::external_timecode_sig_selt, 2, 10)); // 0:off,1:bnc,2:headphone
  674. } else if (src == INPUT_IF_OFF) {
  675. DO_XSYNC(reg_write(reg::external_timecode_sig_selt, 0, 10)); // 0:off,1:bnc,2:headphone
  676. } else {
  677. return kxs_ec_param_error;
  678. }
  679. return kxs_ec_success;
  680. }
  681. xs_error_code_t Xsync::ExternalTimecode_getSource(InputInterface_t &timecode_select) {
  682. uint32_t readbak = 0;
  683. DO_XSYNC(reg_read(reg::external_timecode_sig_selt, readbak, 10));
  684. if (readbak == 1) {
  685. timecode_select = INPUT_IF_TIMECODE_BNC;
  686. } else if (readbak == 2) {
  687. timecode_select = INPUT_IF_TIMECODE_HEADPHONE;
  688. } else if (readbak == 0) {
  689. timecode_select = INPUT_IF_OFF;
  690. } else {
  691. timecode_select = INPUT_IF_OFF;
  692. }
  693. return kxs_ec_success;
  694. }
  695. xs_error_code_t Xsync::ExternalTimecode_setFormat(TimecodeFormat_t format) { REG_WRITE(reg::external_timecode_format, format); }
  696. xs_error_code_t Xsync::ExternalTimecode_getFormat(TimecodeFormat_t &format) { REG_READ(reg::external_timecode_format, format); }
  697. xs_error_code_t Xsync::ExternalTimecode_readCode(XsyncTimecode_t &timecode) { return readtimecode(reg::external_timecode_code0, reg::external_timecode_code1, timecode); }
  698. /*******************************************************************************
  699. * InternalTimecode *
  700. *******************************************************************************/
  701. xs_error_code_t Xsync::InternalTimecode_setFormat(TimecodeFormat_t format) { REG_WRITE(reg::internal_timecode_format, format); }
  702. xs_error_code_t Xsync::InternalTimecode_getFormat(TimecodeFormat_t &format) { REG_READ(reg::internal_timecode_format, format); }
  703. xs_error_code_t Xsync::InternalTimecode_setCode(XsyncTimecode_t timecode) {
  704. DO_XSYNC(reg_write(reg::internal_timecode_en, 0));
  705. DO_XSYNC(writetimecode(reg::internal_timecode_data0, reg::internal_timecode_data1, timecode));
  706. DO_XSYNC(reg_write(reg::internal_timecode_en, 1));
  707. return kxs_ec_success;
  708. }
  709. xs_error_code_t Xsync::InternalTimecode_getCode(XsyncTimecode_t &timecode) { return readtimecode(reg::internal_timecode_data0, reg::internal_timecode_data1, timecode); }
  710. /*******************************************************************************
  711. * SysTimecode *
  712. *******************************************************************************/
  713. xs_error_code_t Xsync::SysTimecode_setSource(uint32_t sig) { REG_WRITE(reg::sys_timecode_select, sig); }
  714. xs_error_code_t Xsync::SysTimecode_getSource(uint32_t &sig) { REG_READ(reg::sys_timecode_select, sig); }
  715. xs_error_code_t Xsync::SysTimecode_readFormat(TimecodeFormat_t &format) { REG_READ(reg::sys_timecode_format, format); }
  716. xs_error_code_t Xsync::SysTimecode_readCode(XsyncTimecode_t &timecode) { return readtimecode(reg::sys_timecode_data0, reg::sys_timecode_data1, timecode); }
  717. /*******************************************************************************
  718. * TimecodeOutputModule *
  719. *******************************************************************************/
  720. xs_error_code_t Xsync::TimecodeOutputModule_setBncOutputLevel(int level) { REG_WRITE(reg::timecode_output_bnc_outut_level_select, level); }
  721. xs_error_code_t Xsync::TimecodeOutputModule_getBncOutputLevel(int &level) { REG_READ(reg::timecode_output_bnc_outut_level_select, level); }
  722. xs_error_code_t Xsync::TimecodeOutputModule_setHeadphoneOutputLevel(int level) { REG_WRITE(reg::timecode_output_headphone_outut_level_select, level); }
  723. xs_error_code_t Xsync::TimecodeOutputModule_getHeadphoneOutputLevel(int &level) { REG_READ(reg::timecode_output_headphone_outut_level_select, level); }
  724. /*******************************************************************************
  725. * GENLOCK *
  726. *******************************************************************************/
  727. xs_error_code_t Xsync::ExternalGenlock_detectFreq(float &freq) { return readfreq(reg::external_genlock_freq, freq); }
  728. xs_error_code_t Xsync::InternalGenlock_setFormat(GenlockFormat_t format) { return reg_write(reg::internal_genlock_format, format); }
  729. xs_error_code_t Xsync::InternalGenlock_getFormat(GenlockFormat_t &format) { REG_READ(reg::internal_genlock_format, format); }
  730. xs_error_code_t Xsync::SysGenlock_setSrc(uint32_t source) { return reg_write(reg::sys_genlock_source, source); }
  731. xs_error_code_t Xsync::SysGenlock_getSrc(uint32_t &extern_or_internal) {
  732. REG_READ(reg::sys_genlock_source, extern_or_internal);
  733. return kxs_ec_success;
  734. }
  735. xs_error_code_t Xsync::SysGenlock_readFreq(float &freq) { return readfreq(reg::sys_genlock_freq, freq); }
  736. /*******************************************************************************
  737. * INTERNAL_CLOCK *
  738. *******************************************************************************/
  739. xs_error_code_t Xsync::InternalClock_setFreq(float freq) {
  740. double T = 1.0 / freq;
  741. double T_ns = T * 1000 * 1000 * 1000;
  742. double cnt = T_ns / 100 + 0.5; // 10MHZ <=> 100ns
  743. uint32_t cnt_u32 = uint32_t(cnt);
  744. return reg_write(reg::internal_clock_freq, cnt_u32);
  745. return kxs_ec_success;
  746. }
  747. xs_error_code_t Xsync::InternalClock_getFreq(float &freq) { return readfreq(reg::internal_clock_freq, freq); }
  748. /*******************************************************************************
  749. * SysClock *
  750. *******************************************************************************/
  751. xs_error_code_t Xsync::SysClock_setSrc(SignalType_t sig) { return reg_write(reg::sys_clock_source, sig); }
  752. xs_error_code_t Xsync::SysClock_getSrc(SignalType_t &sig) { REG_READ(reg::sys_clock_source, sig); }
  753. xs_error_code_t Xsync::SysClock_setTriggerEdge(TriggerEdge_t edge) { return reg_write(reg::sys_clock_trigger_edge_select, edge); }
  754. xs_error_code_t Xsync::SysClock_getTriggerEdge(TriggerEdge_t &edge) { return _reg_read(reg::sys_clock_trigger_edge_select, edge); }
  755. xs_error_code_t Xsync::SysClock_setFreqDivision(uint32_t div) { return reg_write(reg::sys_clock_freq_division_ctrl, div); }
  756. xs_error_code_t Xsync::SysClock_geFreqtDivision(uint32_t &div) { return _reg_read(reg::sys_clock_freq_division_ctrl, div); }
  757. xs_error_code_t Xsync::SysClock_setFreqMultiplication(uint32_t muti) { return reg_write(reg::sys_clock_freq_multiplication_ctrl, muti); }
  758. xs_error_code_t Xsync::SysClock_getFreqMultiplication(uint32_t &muti) { return _reg_read(reg::sys_clock_freq_multiplication_ctrl, muti); }
  759. xs_error_code_t Xsync::SysClock_readOutSigFreq(float &freq) { return readfreq(reg::sys_clock_outfreq_detect, freq); }
  760. xs_error_code_t Xsync::SysClock_readInSigFreq(float &freq) { return readfreq(reg::sys_clock_infreq_detect, freq); }