#include "xsync.hpp" #include #include #define ENABLE_LOG #ifdef ENABLE_LOG #include "../src/logger.hpp" #endif #define TAG "XSYNC" using namespace xsync; using namespace std; /** * @brief XSYNC协议端口 */ #define IFLYTOP_XSYNC_SERVICE_XSYNC_PORT 19900 // xsync端端口 #define IFLYTOP_XSYNC_SERVICE_PC_PORT 19901 // pc 端端口 #define IFLYTOP_XSYNC_TIMECODE_REPORT_XSYNC_PORT 19902 // xsync端端口 #define IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT 19903 // pc端端口 #define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_XSYNC_PORT 13013 // xsync端端口 #define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT 13014 // pc端端口 #define DO_XSYNC(exptr) \ { \ xs_error_code_t ecode = exptr; \ if (ecode != kxs_ec_success) return ecode; \ } static uint32_t ipToUint32(const std::string &ipAddress, bool &suc) { uint32_t result = 0; std::istringstream iss(ipAddress); std::string segment; int i = 0; while (std::getline(iss, segment, '.')) { uint32_t octet = std::stoi(segment); if (octet > 255) { suc = false; return 0; } result |= (octet << ((3 - i) * 8)); i++; } if (i != 4) { suc = false; return 0; } suc = true; uint32_t result_n = 0; result_n |= ((result & 0xff000000) >> 24); result_n |= ((result & 0x00ff0000) >> 8); result_n |= ((result & 0x0000ff00) << 8); result_n |= ((result & 0x000000ff) << 24); return result_n; } namespace xsync { namespace ttlout_module { static map TriggerSigType2StrMap = { {"logic0", tri_logic0}, {"logic1", tri_logic1}, {"ttlin1_module_ext", tri_ttlin1_module_ext}, {"ttlin1_module_divide", tri_ttlin1_module_divide}, {"ttlin2_module_ext", tri_ttlin2_module_ext}, {"ttlin2_module_divide", tri_ttlin2_module_divide}, {"ttlin3_module_ext", tri_ttlin3_module_ext}, {"ttlin3_module_divide", tri_ttlin3_module_divide}, {"ttlin4_module_ext", tri_ttlin4_module_ext}, {"ttlin4_module_divide", tri_ttlin4_module_divide}, {"internal_en_flag", tri_internal_en_flag}, {"genlock_frame_sync_ext", tri_genlock_frame_sync_ext}, {"genlock_frame_sync_internal", tri_genlock_frame_sync_internal}, {"timecode_frame_sync_ext", tri_timecode_frame_sync_ext}, {"timecode_frame_sync_internal", tri_timecode_frame_sync_internal}, {"timecode_serial_data_ext", tri_timecode_serial_data_ext}, {"timecode_serial_data_internal", tri_timecode_serial_data_internal}, {"internal_100hz", tri_internal_100hz}, }; static map Str2TriggerSigTypeMap = { {"logic0", OutSigType_logic0}, // {"logic1", OutSigType_logic1}, // {"test_signal", OutSigType_test_signal}, // {"input_signal", OutSigType_input_signal}, // {"input_signal_mirror", OutSigType_input_signal_mirror}, // {"trigger_mode_signal", OutSigType_trigger_mode_signal}, // {"trigger_mode_signal_mirror", OutSigType_trigger_mode_signal_mirror}, }; string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : TriggerSigType2StrMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = TriggerSigType2StrMap.find(type); if (it != TriggerSigType2StrMap.end()) { return it->second; } return tri_logic0; } string OutputSigType2Str(OutputSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } OutputSigType_t Str2OutputSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return OutSigType_logic0; } list TriggerSigTypeStrSet() { list ret; for (auto &item : TriggerSigType2StrMap) { ret.push_back(item.first); } return ret; } list OutputSigTypeStrSet() { list ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; } } // namespace ttlout_module namespace sig_generator_module { static map Str2ControlModeMap = { {"manualTrigger", kControlMode_manualTrigger}, // {"extTimecodeTrigger", kControlMode_externalTimecodeTrigger}, {"ttl1Trigger", kControlMode_externalTTL1Trigger}, {"ttl2Trigger", kControlMode_externalTTL2Trigger}, {"ttl3Trigger", kControlMode_externalTTL3Trigger}, {"ttl4Trigger", kControlMode_externalTTL4Trigger}, }; string ControlMode2Str(ControlMode_t mode) { for (auto &item : Str2ControlModeMap) { if (item.second == mode) return item.first; } return "unkown"; } ControlMode_t Str2ControlMode(string mode) { auto it = Str2ControlModeMap.find(mode); if (it != Str2ControlModeMap.end()) { return it->second; } return kControlMode_manualTrigger; } list ControlModeStrSet() { list ret; for (auto &item : Str2ControlModeMap) { ret.push_back(item.first); } return ret; } } // namespace sig_generator_module static map Str2TimecodeFormatMap = { {"fps2398", TIMECODE_FPS2398}, // {"fps2400", TIMECODE_FPS2400}, // {"fps2500", TIMECODE_FPS2500}, // {"fps2997", TIMECODE_FPS2997}, // {"fps2997Drop", TIMECODE_FPS2997Drop}, {"fps3000", TIMECODE_FPS3000}, // }; static map Str2GenlockFormatMap = { {"fps2397", GENLOCK_FPS2397}, // {"fps2398", GENLOCK_FPS2398}, // {"fps2400", GENLOCK_FPS2400}, // {"fps2500", GENLOCK_FPS2500}, // {"fps2997", GENLOCK_FPS2997}, // {"fps3000", GENLOCK_FPS3000}, // {"fps5000", GENLOCK_FPS5000}, // {"fps5994", GENLOCK_FPS5994}, // {"fps6000", GENLOCK_FPS6000}, // }; string GenlockFormatToStr(GenlockFormat_t fomrat) { for (auto &item : Str2GenlockFormatMap) { if (item.second == fomrat) return item.first; } return "unkown"; } string TimecodeFormatToStr(TimecodeFormat_t fomrat) { for (auto &item : Str2TimecodeFormatMap) { if (item.second == fomrat) return item.first; } return "unkown"; } GenlockFormat_t Str2GenlockFormat(string format) { auto it = Str2GenlockFormatMap.find(format); if (it != Str2GenlockFormatMap.end()) { return it->second; } return GENLOCK_FPS2397; } TimecodeFormat_t Str2TimecodeFormat(string format) { auto it = Str2TimecodeFormatMap.find(format); if (it != Str2TimecodeFormatMap.end()) { return it->second; } return TIMECODE_FPS2398; } list GenlockFormatStrSet() { list ret; for (auto &item : Str2GenlockFormatMap) { ret.push_back(item.first); } return ret; } list TimecodeFormatStrSet() { list ret; for (auto &item : Str2TimecodeFormatMap) { ret.push_back(item.first); } return ret; } string XsyncTimecodeToStr(XsyncTimecode_t timecode) { char buf[32] = {0}; sprintf(buf, "%02d:%02d:%02d:%02d", timecode.hour, timecode.minute, timecode.second, timecode.frame); return string(buf); } XsyncTimecode_t Str2XsyncTimecode(string timecode) { XsyncTimecode_t ret; char buf[128] = {0}; strncpy(buf, timecode.c_str(), 127); sscanf(buf, "%02d:%02d:%02d:%02d", &ret.hour, &ret.minute, &ret.second, &ret.frame); return ret; } namespace timecode_output_module { static map Str2TriggerSigTypeMap = { {"off", koff}, // {"ext_timecode_sig", kext_timecode_sig}, {"internal_timecode_sig", kinternal_timecode_sig}, }; string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return koff; } list TriggerSigTypeStrSet() { list ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; } static map Str2OutputSigLevelTypeMap = { {"line", kline}, // {"mic", kmic}, }; string OutputSigLevelType2Str(OutputSigLevelType_t type) { for (auto &item : Str2OutputSigLevelTypeMap) { if (item.second == type) return item.first; } return "unkown"; } OutputSigLevelType_t Str2OutputSigLevelType(string type) { auto it = Str2OutputSigLevelTypeMap.find(type); if (it != Str2OutputSigLevelTypeMap.end()) { return it->second; } return kline; } list OutputSigLevelTypeStrSet() { list ret; for (auto &item : Str2OutputSigLevelTypeMap) { ret.push_back(item.first); } return ret; } } // namespace timecode_output_module namespace camera_sync_packet_generator_module { static map Str2TriggerSigTypeMap = { {"off", koff}, // {"internal_genlock_sig", kinternal_genlock_sig}, {"ext_genlock_sig", kext_genlock_sig}, }; string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return koff; } list TriggerSigTypeStrSet() { list ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; } } // namespace camera_sync_packet_generator_module namespace timecode_input_module { static map Str2TriggerSigTypeMap = { {"off", koff}, // {"bnc_timecode", kbnc_timecode}, {"headphone_timecode", kheadphone_timecode}, }; string TriggerSigType2Str(TriggerSigType_t type) { for (auto &item : Str2TriggerSigTypeMap) { if (item.second == type) return item.first; } return "unkown"; } TriggerSigType_t Str2TriggerSigType(string type) { auto it = Str2TriggerSigTypeMap.find(type); if (it != Str2TriggerSigTypeMap.end()) { return it->second; } return koff; } list TriggerSigTypeStrSet() { list ret; for (auto &item : Str2TriggerSigTypeMap) { ret.push_back(item.first); } return ret; } } // namespace timecode_input_module } // namespace xsync static XsyncTimecode_t timecode64ToXsyncTimeCode(Timecode64_t tc64) { uint8_t frameuints = tc64.tc0 & 0x0f; uint8_t frame10s = (tc64.tc0 >> 8) & 0x3; uint8_t seconduints = (tc64.tc0 >> 16) & 0x0f; uint8_t second10s = (tc64.tc0 >> 24) & 0x07; uint8_t minuteuints = tc64.tc1 & 0x0f; uint8_t minute10s = (tc64.tc1 >> 8) & 0x07; uint8_t houruints = (tc64.tc1 >> 16) & 0x0f; uint8_t hour10s = (tc64.tc1 >> 24) & 0x03; XsyncTimecode_t timecode; timecode.hour = hour10s * 10 + houruints; timecode.minute = minute10s * 10 + minuteuints; timecode.second = second10s * 10 + seconduints; timecode.frame = frame10s * 10 + frameuints; return timecode; } static Timecode64_t timecodeTo64(XsyncTimecode_t tc) { Timecode64_t tc64; uint32_t frameuints = tc.frame % 10; uint32_t frame10s = tc.frame / 10; uint32_t seconduints = tc.second % 10; uint32_t second10s = tc.second / 10; uint32_t minuteuints = tc.minute % 10; uint32_t minute10s = tc.minute / 10; uint32_t houruints = tc.hour % 10; uint32_t hour10s = tc.hour / 10; tc64.tc0 = frameuints + (frame10s << 8) + (seconduints << 16) + (second10s << 24); tc64.tc1 = minuteuints + (minute10s << 8) + (houruints << 16) + (hour10s << 24); return tc64; } /******************************************************************************* * Xsync * *******************************************************************************/ Xsync::Xsync(/* args */) {} Xsync &Xsync::Ins() { static Xsync xsync; return xsync; } void Xsync::initialize(I_XSUDPFactory *xsync_udp_factory) { m_xsync_udp_factory = xsync_udp_factory; } xs_error_code_t Xsync::connect(string xsync_ip) { lock_guard lock(lock_); m_xsync_ip = xsync_ip; disConnect(); /** * @brief 创建 m_xsync_reg_udp */ xs_error_code_t ecode = kxs_ec_success; auto xsync_reg_udp = m_xsync_udp_factory->createXSUDP(); ecode = xsync_reg_udp->initialize("0.0.0.0", IFLYTOP_XSYNC_SERVICE_PC_PORT); if (ecode != kxs_ec_success) { return ecode; } /** * @brief 创建 m_xsync_timecode_udp_listener */ auto xsync_timecode_udp_listener = m_xsync_udp_factory->createXSUDP(); ecode = xsync_timecode_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT); if (ecode != kxs_ec_success) { return ecode; } ecode = xsync_timecode_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseTimecodeMsgAndReport(from, data, length); }); if (ecode != kxs_ec_success) { return ecode; } /** * @brief 创建 m_xsync_camera_sync_udp_listener */ auto xsync_camera_sync_udp_listener = m_xsync_udp_factory->createXSUDP(); ecode = xsync_camera_sync_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT); if (ecode != kxs_ec_success) { return ecode; } ecode = xsync_camera_sync_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseCameraSyncMsgAndReport(from, data, length); }); if (ecode != kxs_ec_success) { return ecode; } m_xsync_reg_udp = xsync_reg_udp; m_xsync_timecode_udp_listener = xsync_timecode_udp_listener; m_xsync_camera_sync_udp_listener = xsync_camera_sync_udp_listener; m_net_state = kxsync_net_state_connected; return ecode; } xs_error_code_t Xsync::disConnect() { lock_guard lock(lock_); if (m_xsync_reg_udp != nullptr) { m_xsync_reg_udp->stopReceive(); m_xsync_reg_udp = nullptr; } if (m_xsync_timecode_udp_listener != nullptr) { m_xsync_timecode_udp_listener->stopReceive(); m_xsync_timecode_udp_listener = nullptr; } if (m_xsync_camera_sync_udp_listener != nullptr) { m_xsync_camera_sync_udp_listener->stopReceive(); m_xsync_camera_sync_udp_listener = nullptr; } m_net_state = kxsync_net_state_disconnect; return kxs_ec_success; } xsync_net_state_t Xsync::getNetState() { return m_net_state; } void Xsync::Basic_registerOnTimecodeMsgCallback(xsync_on_timecode_msg_t on_timecode_msg_cb) { m_on_timecode_msg_cb = on_timecode_msg_cb; } void Xsync::Basic_registerOnCameraSyncMsgCallback(xsync_on_camera_sync_msg_t on_camera_sync_msg_cb) { m_on_camera_sync_msg_cb = on_camera_sync_msg_cb; } xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) { lock_guard lock(lock_); if (!m_xsync_reg_udp) return kxs_ec_lose_connect; m_xsync_reg_udp->clearRxBuffer(); cmd->index = txpacket_index++; XsyncNetAdd toadd = {m_xsync_ip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT}; xs_error_code_t ecode = // m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr); if (ecode != kxs_ec_success) { return ecode; } XsyncNetAdd fromadd; while (true) { // ZLOGI(TAG, "start rx wait for rxdata"); ecode = m_xsync_reg_udp->receive((char *)rx_data, buffersize, fromadd, overtime_ms); // ZLOGI(TAG, "end rx wait for rxdata"); if (ecode != kxs_ec_success) { return ecode; } if (rx_data->index != cmd->index) { // ZLOGI(TAG, "packet index error %d %d", cmd->index, rx_data->index); continue; } break; } return (xs_error_code_t)rx_data->data[0]; } xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, uint32_t ®backvalue, int32_t overtime_ms) { /** * @brief * 协议说明 * * kxsync_packet_type_reg_write * tx: regadd,regdata * rx: ecode,regdata */ uint8_t txdata[128] = {0}; uint8_t rxdata[128] = {0}; iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata; iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata; txpacket->type = kxsync_packet_type_cmd; txpacket->index = txpacket_index++; txpacket->cmd = kxsync_packet_type_reg_write; txpacket->ndata = 2; txpacket->data[0] = regadd; txpacket->data[1] = regvalue; auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms); if (ecode != kxs_ec_success) { return ecode; } regbackvalue = rxpacket->data[1]; return ecode; } xs_error_code_t Xsync::reg_read(uint32_t regadd, uint32_t ®value, int32_t overtime_ms) { /** * @brief * 协议说明 * * kxsync_packet_type_reg_write * tx: regadd,regdata * rx: ecode,regdata */ uint8_t txdata[128] = {0}; uint8_t rxdata[128] = {0}; iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata; iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata; txpacket->type = kxsync_packet_type_cmd; txpacket->index = txpacket_index++; txpacket->cmd = kxsync_packet_type_reg_read; txpacket->ndata = 2; txpacket->data[0] = regadd; txpacket->data[1] = regvalue; auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms); if (ecode != kxs_ec_success) { return ecode; } regvalue = rxpacket->data[1]; return ecode; } xs_error_code_t Xsync::reg_read_muti(uint32_t regadd, uint32_t nreg, vector ®values, int32_t overtime_ms) { /** * @brief * 协议说明 * * kxsync_packet_type_reg_read_regs * tx: regstartadd,nreg * rx: ecode,regdatas */ uint8_t txdata[128] = {0}; uint8_t rxdata[1280] = {0}; iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata; iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata; txpacket->type = kxsync_packet_type_cmd; txpacket->index = txpacket_index++; txpacket->cmd = kxsync_packet_type_reg_read_regs; txpacket->ndata = 2; txpacket->data[0] = regadd; txpacket->data[1] = nreg; auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms); if (ecode != kxs_ec_success) { return ecode; } if (rxpacket->ndata > 0) { for (int i = 0; i < rxpacket->ndata - 1; i++) { regvalues.push_back(rxpacket->data[i + 1]); } } return ecode; } void Xsync::parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) { // iflytop_timecode_report_packet_t *packet = (iflytop_timecode_report_packet_t *)data; Timecode64_t tc64; tc64.tc0 = packet->timecode0; tc64.tc1 = packet->timecode1; XsyncTimecode_t timecode = timecode64ToXsyncTimeCode(tc64); if (m_on_timecode_msg_cb) m_on_timecode_msg_cb(&timecode); } void Xsync::parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) { uint32_t count = 0; uint32_t data0 = data[7]; uint32_t data1 = data[6]; uint32_t data2 = data[5]; uint32_t data3 = data[4]; count = data0 + (data1 << 8) + (data2 << 16) + (data3 << 24); xysnc_camera_sync_data_t camera_sync_data; camera_sync_data.frameIndex = count; if (m_on_camera_sync_msg_cb) m_on_camera_sync_msg_cb(&camera_sync_data); } xs_error_code_t Xsync::Basic_generatorNewMac() { return doaction(xsync_stm32_action_generator_new_mac, 0, nullptr, 2000); } xs_error_code_t Xsync::Basic_factoryReset() { return doaction(xsync_stm32_action_factory_reset, 0, nullptr, 1000); } xs_error_code_t Xsync::Basic_reboot() { return doaction(xsync_stm32_action_Basic_reboot, 0, nullptr); } xs_error_code_t Xsync::storageConfig() { return doaction(xsync_stm32_action_storage_cfg, 0, nullptr, 1000); } xs_error_code_t Xsync::Basic_changeNetworkConfig(string ip, string mask, string gateway) { uint32_t ip32 = 0; uint32_t mask32 = 0; uint32_t gateway32 = 0; xs_error_code_t ecode; bool suc = false; ip32 = (uint32_t)ipToUint32(ip.c_str(), suc); if (!suc) return kxs_ec_param_error; mask32 = (uint32_t)ipToUint32(mask.c_str(), suc); if (!suc) return kxs_ec_param_error; gateway32 = (uint32_t)ipToUint32(gateway.c_str(), suc); if (!suc) return kxs_ec_param_error; uint32_t readbak = 0; ecode = reg_write(reg::kstm32_ip, ip32, readbak); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kstm32_netmask, mask32, readbak); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kstm32_gw, gateway32, readbak); if (ecode != kxs_ec_success) return ecode; ecode = storageConfig(); if (ecode != kxs_ec_success) return ecode; return kxs_ec_success; } xs_error_code_t Xsync::Basic_clearXsyncCameraSyncIndexCount() { uint32_t readbak = 0; return reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak); } xs_error_code_t Xsync::doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms) { // uint32_t readbak = 0; xs_error_code_t ecode; ecode = reg_write(reg::kstm32_action_val0, actionval, readbak); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kstm32_action0, action, readbak, overtime_ms); if (ecode != kxs_ec_success) return ecode; if (ackreturn) *ackreturn = readbak; return ecode; } xs_error_code_t Xsync::Basic_setGenlockFormat(GenlockFormat_t format) { DO_XSYNC(SigGenerator_setGenlockFormat(format)); return kxs_ec_success; } xs_error_code_t Xsync::Basic_getGenlockFormat(GenlockFormat_t &format) { DO_XSYNC(SigGenerator_getGenlockFormat(format)); return kxs_ec_success; } xs_error_code_t Xsync::Basic_setTimecodeFormat(TimecodeFormat_t format) { DO_XSYNC(SigGenerator_setTimecodeFormat(format)); DO_XSYNC(TimecodeInputModule_setTimecodeFormat(format)); return kxs_ec_success; } xs_error_code_t Xsync::Basic_getTimecodeFormat(TimecodeFormat_t &format) { DO_XSYNC(SigGenerator_getTimecodeFormat(format)); return kxs_ec_success; } /******************************************************************************* * TTLOutputModule * *******************************************************************************/ xs_error_code_t Xsync::TTLOutputModule_setInputSigType(int32_t index, ttlout_module::TriggerSigType_t source) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0; if (index == 1) { regAdd = reg::kttlout1_input_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_input_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_input_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_input_sig_slt; } else { return kxs_ec_param_error; } return reg_write(regAdd, source, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getInputSigType(int32_t index, ttlout_module::TriggerSigType_t &source) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0; if (index == 1) { regAdd = reg::kttlout1_input_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_input_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_input_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_input_sig_slt; } else { return kxs_ec_param_error; } ecode = reg_read(regAdd, readbak, 10); if (ecode != kxs_ec_success) return ecode; source = (ttlout_module::TriggerSigType_t)readbak; return ecode; } xs_error_code_t Xsync::TTLOutputModule_setOutputSigType(int32_t index, ttlout_module::OutputSigType_t output_type) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0; if (index == 1) { regAdd = reg::kttlout1_output_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_output_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_output_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_output_sig_slt; } else { return kxs_ec_param_error; } return reg_write(regAdd, output_type, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getOutputSigType(int32_t index, ttlout_module::OutputSigType_t &output_type) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0; if (index == 1) { regAdd = reg::kttlout1_output_sig_slt; } else if (index == 2) { regAdd = reg::kttlout2_output_sig_slt; } else if (index == 3) { regAdd = reg::kttlout3_output_sig_slt; } else if (index == 4) { regAdd = reg::kttlout4_output_sig_slt; } else { return kxs_ec_param_error; } ecode = reg_read(regAdd, readbak, 10); if (ecode != kxs_ec_success) return ecode; output_type = (ttlout_module::OutputSigType_t)readbak; return ecode; } xs_error_code_t Xsync::TTLOutputModule_setTriggerModePulseWidth(int32_t index, uint32_t pulse_width_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t readbak = 0; uint32_t regAdd = 0; if (index == 1) { regAdd = reg::kttlout1_pulse_mode_duration; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_duration; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_duration; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_duration; } else { return kxs_ec_param_error; } uint32_t pluse_width = pulse_width_ms * 1000; // 1MHZ计数 return reg_write(regAdd, pluse_width, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getTriggerModePulseWidth(int32_t index, uint32_t &pulse_width_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t regAdd = 0; uint32_t readbak = 0; if (index == 1) { regAdd = reg::kttlout1_pulse_mode_duration; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_duration; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_duration; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_duration; } else { return kxs_ec_param_error; } ecode = reg_read(regAdd, regAdd, 10); if (ecode != kxs_ec_success) return ecode; pulse_width_ms = readbak / 1000; return ecode; } xs_error_code_t Xsync::TTLOutputModule_setTriggerModePulseDelay(int32_t index, uint32_t pulse_delay_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t regAdd = 0; uint32_t readbak = 0; if (index == 1) { regAdd = reg::kttlout1_pulse_mode_delay; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_delay; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_delay; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_delay; } else { return kxs_ec_param_error; } uint32_t pulse_delay = pulse_delay_ms * 1000; // 1MHZ计数 return reg_write(regAdd, pulse_delay, readbak, 10); } xs_error_code_t Xsync::TTLOutputModule_getTriggerModePulseDelay(int32_t index, uint32_t &pulse_delay_ms) { xs_error_code_t ecode = kxs_ec_success; uint32_t regAdd = 0; uint32_t readbak = 0; if (index == 1) { regAdd = reg::kttlout1_pulse_mode_delay; } else if (index == 2) { regAdd = reg::kttlout2_pulse_mode_delay; } else if (index == 3) { regAdd = reg::kttlout3_pulse_mode_delay; } else if (index == 4) { regAdd = reg::kttlout4_pulse_mode_delay; } else { return kxs_ec_param_error; } ecode = reg_read(regAdd, readbak, 10); if (ecode != kxs_ec_success) return ecode; pulse_delay_ms = readbak / 1000; return ecode; } xs_error_code_t Xsync::SigGenerator_setControlMode(sig_generator_module::ControlMode_t mode) { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_ctl, mode, readbak, 10); } xs_error_code_t Xsync::SigGenerator_getControlMode(sig_generator_module::ControlMode_t &mode) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_ctl, readbak, 10); if (ecode != kxs_ec_success) return ecode; mode = (sig_generator_module::ControlMode_t)readbak; return ecode; } xs_error_code_t Xsync::SigGenerator_manualStart() { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_control_trigger_reg, 1, readbak, 10); } xs_error_code_t Xsync::SigGenerator_manualStop() { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_control_trigger_reg, 0, readbak, 10); } xs_error_code_t Xsync::SigGenerator_setTimecode(XsyncTimecode_t timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; Timecode64_t tc64 = timecodeTo64(timecode); ecode = reg_write(reg::kSigGenerator_timecode0, tc64.tc0, readbak, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kSigGenerator_timecode1, tc64.tc1, readbak, 10); if (ecode != kxs_ec_success) return ecode; return ecode; } xs_error_code_t Xsync::SigGenerator_getTimecode(XsyncTimecode_t &timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; uint32_t tc0 = 0; uint32_t tc1 = 0; ecode = reg_read(reg::kSigGenerator_timecode0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::kSigGenerator_timecode1, tc1, 10); if (ecode != kxs_ec_success) return ecode; Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1; timecode = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::SigGenerator_setAutoStartTimecode(XsyncTimecode_t timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; Timecode64_t tc64 = timecodeTo64(timecode); ecode = reg_write(reg::kSigGenerator_timecode_start0, tc64.tc0, readbak, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_write(reg::kSigGenerator_timecode_start1, tc64.tc1, readbak, 10); if (ecode != kxs_ec_success) return ecode; return ecode; } xs_error_code_t Xsync::SigGenerator_getAutoStartTimecode(XsyncTimecode_t &timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; uint32_t tc0 = 0; uint32_t tc1 = 0; ecode = reg_read(reg::kSigGenerator_timecode_start0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::kSigGenerator_timecode_start1, tc1, 10); if (ecode != kxs_ec_success) return ecode; Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1; timecode = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::SigGenerator_getWorkState(uint32_t &work_state) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_work_state, readbak, 10); if (ecode != kxs_ec_success) return ecode; work_state = readbak; return ecode; } xs_error_code_t Xsync::SigGenerator_setGenlockFormat(GenlockFormat_t format) { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_genlock_format, format, readbak, 10); } xs_error_code_t Xsync::SigGenerator_getGenlockFormat(GenlockFormat_t &format) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_genlock_format, readbak, 10); if (ecode != kxs_ec_success) return ecode; format = (GenlockFormat_t)readbak; return ecode; } xs_error_code_t Xsync::SigGenerator_setTimecodeFormat(TimecodeFormat_t format) { uint32_t readbak = 0; return reg_write(reg::kSigGenerator_timecode_format, format, readbak, 10); } xs_error_code_t Xsync::SigGenerator_getTimecodeFormat(TimecodeFormat_t &format) { uint32_t readbak = 0; auto ecode = reg_read(reg::kSigGenerator_timecode_format, readbak, 10); if (ecode != kxs_ec_success) return ecode; format = (TimecodeFormat_t)readbak; return ecode; } xs_error_code_t Xsync::TimecodeOutputModule_setTimecodeSrcSelect(timecode_output_module::TriggerSigType_t timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_out_timecode_select, timecode_select, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getTimecodeSrcSelect(timecode_output_module::TriggerSigType_t &timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_out_timecode_select, readbak, 10)); timecode_select = (timecode_output_module::TriggerSigType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getTimecodeNow(XsyncTimecode_t &timecode_now) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; uint32_t tc0 = 0; uint32_t tc1 = 0; ecode = reg_read(reg::ktimecode_out_timecode0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::ktimecode_out_timecode1, tc1, 10); if (ecode != kxs_ec_success) return ecode; Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1; timecode_now = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::TimecodeOutputModule_getTimecodeFormat(TimecodeFormat_t &timecode_format) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; ecode = reg_read(reg::ktimecode_out_timecode_format, readbak, 10); if (ecode != kxs_ec_success) return ecode; timecode_format = (TimecodeFormat_t)readbak; return ecode; } xs_error_code_t Xsync::TimecodeOutputModule_setBncOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_out_bnc_outut_level_select, level, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getBncOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_out_bnc_outut_level_select, readbak, 10)); level = (timecode_output_module::OutputSigLevelType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_setHeadphoneOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_out_headphone_outut_level_select, level, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeOutputModule_getHeadphoneOutputLevel(timecode_output_module::OutputSigLevelType_t &level) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_out_headphone_outut_level_select, readbak, 10)); level = (timecode_output_module::OutputSigLevelType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t sig) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::kcamera_sync_out_camera_sync_select, sig, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t &sig) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kcamera_sync_out_camera_sync_select, readbak, 10)); sig = (camera_sync_packet_generator_module::TriggerSigType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setReportPeriod(uint32_t packetNum) { uint32_t readbak = 0; if (packetNum == 0) packetNum = 1; DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count_report_period, packetNum, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getReportPeriod(uint32_t &packetNum) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count_report_period, readbak, 10)); packetNum = readbak; return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getPacketIndex(uint32_t &index) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count, readbak, 10)); index = readbak; return kxs_ec_success; } xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_clearPacketIndex() { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_setSrcSelect(timecode_input_module::TriggerSigType_t timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_in_timecode_sig_selt, timecode_select, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_getSrcSelect(timecode_input_module::TriggerSigType_t timecode_select) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_in_timecode_sig_selt, readbak, 10)); timecode_select = (timecode_input_module::TriggerSigType_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_setTimecodeFormat(TimecodeFormat_t format) { uint32_t readbak = 0; DO_XSYNC(reg_write(reg::ktimecode_in_timecode_format, format, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_getTimecodeFormat(TimecodeFormat_t &format) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::ktimecode_in_timecode_format, readbak, 10)); format = (TimecodeFormat_t)readbak; return kxs_ec_success; } xs_error_code_t Xsync::TimecodeInputModule_getTimecode(XsyncTimecode_t& timecode) { uint32_t readbak = 0; xs_error_code_t ecode = kxs_ec_success; uint32_t tc0 = 0; uint32_t tc1 = 0; ecode = reg_read(reg::ktimecode_in_timecode0, tc0, 10); if (ecode != kxs_ec_success) return ecode; ecode = reg_read(reg::ktimecode_in_timecode1, tc1, 10); if (ecode != kxs_ec_success) return ecode; Timecode64_t tc64; tc64.tc0 = tc0; tc64.tc1 = tc1; timecode = timecode64ToXsyncTimeCode(tc64); return ecode; } xs_error_code_t Xsync::TTLInputModule_setEn(int32_t index, bool en) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kttlin_en, readbak, 10)); if (en) { readbak |= (1 << index); } else { readbak &= ~(1 << index); } DO_XSYNC(reg_write(reg::kttlin_en, readbak, readbak, 10)); return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule_getEn(int32_t index, bool &en) { uint32_t readbak = 0; DO_XSYNC(reg_read(reg::kttlin_en, readbak, 10)); en = (readbak & (1 << index)) != 0; return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule_setFilterFactor(int32_t index, uint32_t factor) { uint32_t readbak = 0; if (index == 1) { DO_XSYNC(reg_write(reg::kttlin1_filter_factor, factor, readbak, 10)); } else if (index == 2) { DO_XSYNC(reg_write(reg::kttlin2_filter_factor, factor, readbak, 10)); } else if (index == 3) { DO_XSYNC(reg_write(reg::kttlin3_filter_factor, factor, readbak, 10)); } else if (index == 4) { DO_XSYNC(reg_write(reg::kttlin4_filter_factor, factor, readbak, 10)); } else { return kxs_ec_param_error; } return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule_getFilterFactor(int32_t index, uint32_t &factor) { uint32_t readbak = 0; if (index == 1) { DO_XSYNC(reg_read(reg::kttlin1_filter_factor, readbak, 10)); } else if (index == 2) { DO_XSYNC(reg_read(reg::kttlin2_filter_factor, readbak, 10)); } else if (index == 3) { DO_XSYNC(reg_read(reg::kttlin3_filter_factor, readbak, 10)); } else if (index == 4) { DO_XSYNC(reg_read(reg::kttlin4_filter_factor, readbak, 10)); } else { return kxs_ec_param_error; } factor = readbak; return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule_setDivideFactor(int32_t index, uint32_t factor) { uint32_t readbak = 0; if (index == 1) { DO_XSYNC(reg_write(reg::kttlin1_devide_factor, factor, readbak, 10)); } else if (index == 2) { DO_XSYNC(reg_write(reg::kttlin2_devide_factor, factor, readbak, 10)); } else if (index == 3) { DO_XSYNC(reg_write(reg::kttlin3_devide_factor, factor, readbak, 10)); } else if (index == 4) { DO_XSYNC(reg_write(reg::kttlin4_devide_factor, factor, readbak, 10)); } else { return kxs_ec_param_error; } return kxs_ec_success; } xs_error_code_t Xsync::TTLInputModule_getDivideFactor(int32_t index, uint32_t &factor) { uint32_t readbak = 0; if (index == 1) { DO_XSYNC(reg_read(reg::kttlin1_devide_factor, readbak, 10)); } else if (index == 2) { DO_XSYNC(reg_read(reg::kttlin2_devide_factor, readbak, 10)); } else if (index == 3) { DO_XSYNC(reg_read(reg::kttlin3_devide_factor, readbak, 10)); } else if (index == 4) { DO_XSYNC(reg_read(reg::kttlin4_devide_factor, readbak, 10)); } else { return kxs_ec_param_error; } factor = readbak; return kxs_ec_success; }