You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

857 lines
34 KiB

#include "xsync.hpp"
#include <string.h>
#include <map>
#define ENABLE_LOG
#ifdef ENABLE_LOG
#include "../src/logger.hpp"
#endif
#define TAG "XSYNC"
using namespace xsync;
using namespace std;
/**
* @brief XSYNC协议端口
*/
#define IFLYTOP_XSYNC_SERVICE_XSYNC_PORT 19900 // xsync端端口
#define IFLYTOP_XSYNC_SERVICE_PC_PORT 19901 // pc 端端口
#define IFLYTOP_XSYNC_TIMECODE_REPORT_XSYNC_PORT 19902 // xsync端端口
#define IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT 19903 // pc端端口
#define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_XSYNC_PORT 13013 // xsync端端口
#define IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT 13014 // pc端端口
#define DO_XSYNC(exptr) \
{ \
xs_error_code_t ecode = exptr; \
if (ecode != kxs_ec_success) return ecode; \
}
#define REG_WRITE(reg, value) \
{ \
DO_XSYNC(reg_write(reg, value, 10)); \
return kxs_ec_success; \
}
#define REG_READ(reg, value) \
{ \
uint32_t readbak = 0; \
DO_XSYNC(reg_read(reg, readbak, 10)); \
value = (decltype(value))readbak; \
return kxs_ec_success; \
}
static uint32_t ipToUint32(const std::string &ipAddress, bool &suc) {
uint32_t result = 0;
std::istringstream iss(ipAddress);
std::string segment;
int i = 0;
while (std::getline(iss, segment, '.')) {
uint32_t octet = std::stoi(segment);
if (octet > 255) {
suc = false;
return 0;
}
result |= (octet << ((3 - i) * 8));
i++;
}
if (i != 4) {
suc = false;
return 0;
}
suc = true;
uint32_t result_n = 0;
result_n |= ((result & 0xff000000) >> 24);
result_n |= ((result & 0x00ff0000) >> 8);
result_n |= ((result & 0x0000ff00) << 8);
result_n |= ((result & 0x000000ff) << 24);
return result_n;
}
namespace xsync {
namespace sig_generator_module {
static map<string, ControlMode_t> Str2ControlModeMap = {
{"manualTrigger", kControlMode_manualTrigger}, //
{"extTimecodeTrigger", kControlMode_externalTimecodeTrigger},
{"ttl1Trigger", kControlMode_externalTTL1Trigger},
{"ttl2Trigger", kControlMode_externalTTL2Trigger},
{"ttl3Trigger", kControlMode_externalTTL3Trigger},
{"ttl4Trigger", kControlMode_externalTTL4Trigger},
};
string ControlMode2Str(ControlMode_t mode) {
for (auto &item : Str2ControlModeMap) {
if (item.second == mode) return item.first;
}
return "unkown";
}
ControlMode_t Str2ControlMode(string mode) {
auto it = Str2ControlModeMap.find(mode);
if (it != Str2ControlModeMap.end()) {
return it->second;
}
return kControlMode_manualTrigger;
}
list<string> ControlModeStrSet() {
list<string> ret;
for (auto &item : Str2ControlModeMap) {
ret.push_back(item.first);
}
return ret;
}
} // namespace sig_generator_module
namespace timecode_output_module {
static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = {
{"off", koff}, //
{"ext_timecode_sig", kext_timecode_sig},
{"internal_timecode_sig", kinternal_timecode_sig},
};
string TriggerSigType2Str(TriggerSigType_t type) {
for (auto &item : Str2TriggerSigTypeMap) {
if (item.second == type) return item.first;
}
return "unkown";
}
TriggerSigType_t Str2TriggerSigType(string type) {
auto it = Str2TriggerSigTypeMap.find(type);
if (it != Str2TriggerSigTypeMap.end()) {
return it->second;
}
return koff;
}
list<string> TriggerSigTypeStrSet() {
list<string> ret;
for (auto &item : Str2TriggerSigTypeMap) {
ret.push_back(item.first);
}
return ret;
}
static map<string, OutputSigLevelType_t> Str2OutputSigLevelTypeMap = {
{"line", kline}, //
{"mic", kmic},
};
string OutputSigLevelType2Str(OutputSigLevelType_t type) {
for (auto &item : Str2OutputSigLevelTypeMap) {
if (item.second == type) return item.first;
}
return "unkown";
}
OutputSigLevelType_t Str2OutputSigLevelType(string type) {
auto it = Str2OutputSigLevelTypeMap.find(type);
if (it != Str2OutputSigLevelTypeMap.end()) {
return it->second;
}
return kline;
}
list<string> OutputSigLevelTypeStrSet() {
list<string> ret;
for (auto &item : Str2OutputSigLevelTypeMap) {
ret.push_back(item.first);
}
return ret;
}
} // namespace timecode_output_module
namespace camera_sync_packet_generator_module {
static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = {
{"off", koff}, //
{"internal_genlock_sig", kinternal_genlock_sig},
{"ext_genlock_sig", kext_genlock_sig},
};
string TriggerSigType2Str(TriggerSigType_t type) {
for (auto &item : Str2TriggerSigTypeMap) {
if (item.second == type) return item.first;
}
return "unkown";
}
TriggerSigType_t Str2TriggerSigType(string type) {
auto it = Str2TriggerSigTypeMap.find(type);
if (it != Str2TriggerSigTypeMap.end()) {
return it->second;
}
return koff;
}
list<string> TriggerSigTypeStrSet() {
list<string> ret;
for (auto &item : Str2TriggerSigTypeMap) {
ret.push_back(item.first);
}
return ret;
}
} // namespace camera_sync_packet_generator_module
namespace timecode_input_module {
static map<string, TriggerSigType_t> Str2TriggerSigTypeMap = {
{"off", koff}, //
{"bnc_timecode", kbnc_timecode},
{"headphone_timecode", kheadphone_timecode},
};
string TriggerSigType2Str(TriggerSigType_t type) {
for (auto &item : Str2TriggerSigTypeMap) {
if (item.second == type) return item.first;
}
return "unkown";
}
TriggerSigType_t Str2TriggerSigType(string type) {
auto it = Str2TriggerSigTypeMap.find(type);
if (it != Str2TriggerSigTypeMap.end()) {
return it->second;
}
return koff;
}
list<string> TriggerSigTypeStrSet() {
list<string> ret;
for (auto &item : Str2TriggerSigTypeMap) {
ret.push_back(item.first);
}
return ret;
}
} // namespace timecode_input_module
} // namespace xsync
static XsyncTimecode_t timecode64ToXsyncTimeCode(Timecode64_t tc64) {
uint8_t frameuints = tc64.tc0 & 0x0f;
uint8_t frame10s = (tc64.tc0 >> 8) & 0x3;
uint8_t seconduints = (tc64.tc0 >> 16) & 0x0f;
uint8_t second10s = (tc64.tc0 >> 24) & 0x07;
uint8_t minuteuints = tc64.tc1 & 0x0f;
uint8_t minute10s = (tc64.tc1 >> 8) & 0x07;
uint8_t houruints = (tc64.tc1 >> 16) & 0x0f;
uint8_t hour10s = (tc64.tc1 >> 24) & 0x03;
XsyncTimecode_t timecode;
timecode.hour = hour10s * 10 + houruints;
timecode.minute = minute10s * 10 + minuteuints;
timecode.second = second10s * 10 + seconduints;
timecode.frame = frame10s * 10 + frameuints;
return timecode;
}
static Timecode64_t timecodeTo64(XsyncTimecode_t tc) {
Timecode64_t tc64;
uint32_t frameuints = tc.frame % 10;
uint32_t frame10s = tc.frame / 10;
uint32_t seconduints = tc.second % 10;
uint32_t second10s = tc.second / 10;
uint32_t minuteuints = tc.minute % 10;
uint32_t minute10s = tc.minute / 10;
uint32_t houruints = tc.hour % 10;
uint32_t hour10s = tc.hour / 10;
tc64.tc0 = frameuints + (frame10s << 8) + (seconduints << 16) + (second10s << 24);
tc64.tc1 = minuteuints + (minute10s << 8) + (houruints << 16) + (hour10s << 24);
return tc64;
}
/*******************************************************************************
* Xsync *
*******************************************************************************/
Xsync::Xsync(/* args */) {}
Xsync &Xsync::Ins() {
static Xsync xsync;
return xsync;
}
void Xsync::initialize(I_XSUDPFactory *xsync_udp_factory) { m_xsync_udp_factory = xsync_udp_factory; }
xs_error_code_t Xsync::connect(string xsync_ip) {
lock_guard<recursive_mutex> lock(lock_);
m_xsync_ip = xsync_ip;
disConnect();
/**
* @brief 创建 m_xsync_reg_udp
*/
xs_error_code_t ecode = kxs_ec_success;
auto xsync_reg_udp = m_xsync_udp_factory->createXSUDP();
ecode = xsync_reg_udp->initialize("0.0.0.0", IFLYTOP_XSYNC_SERVICE_PC_PORT);
if (ecode != kxs_ec_success) {
return ecode;
}
/**
* @brief 创建 m_xsync_timecode_udp_listener
*/
auto xsync_timecode_udp_listener = m_xsync_udp_factory->createXSUDP();
ecode = xsync_timecode_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT);
if (ecode != kxs_ec_success) {
return ecode;
}
ecode = xsync_timecode_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseTimecodeMsgAndReport(from, data, length); });
if (ecode != kxs_ec_success) {
return ecode;
}
/**
* @brief 创建 m_xsync_camera_sync_udp_listener
*/
auto xsync_camera_sync_udp_listener = m_xsync_udp_factory->createXSUDP();
ecode = xsync_camera_sync_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT);
if (ecode != kxs_ec_success) {
return ecode;
}
ecode = xsync_camera_sync_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseCameraSyncMsgAndReport(from, data, length); });
if (ecode != kxs_ec_success) {
return ecode;
}
m_xsync_reg_udp = xsync_reg_udp;
m_xsync_timecode_udp_listener = xsync_timecode_udp_listener;
m_xsync_camera_sync_udp_listener = xsync_camera_sync_udp_listener;
m_net_state = kxsync_net_state_connected;
return ecode;
}
xs_error_code_t Xsync::disConnect() {
lock_guard<recursive_mutex> lock(lock_);
if (m_xsync_reg_udp != nullptr) {
m_xsync_reg_udp->stopReceive();
m_xsync_reg_udp = nullptr;
}
if (m_xsync_timecode_udp_listener != nullptr) {
m_xsync_timecode_udp_listener->stopReceive();
m_xsync_timecode_udp_listener = nullptr;
}
if (m_xsync_camera_sync_udp_listener != nullptr) {
m_xsync_camera_sync_udp_listener->stopReceive();
m_xsync_camera_sync_udp_listener = nullptr;
}
m_net_state = kxsync_net_state_disconnect;
return kxs_ec_success;
}
xsync_net_state_t Xsync::getNetState() { return m_net_state; }
void Xsync::Basic_registerOnTimecodeMsgCallback(xsync_on_timecode_msg_t on_timecode_msg_cb) { m_on_timecode_msg_cb = on_timecode_msg_cb; }
void Xsync::Basic_registerOnCameraSyncMsgCallback(xsync_on_camera_sync_msg_t on_camera_sync_msg_cb) { m_on_camera_sync_msg_cb = on_camera_sync_msg_cb; }
void Xsync::Basic_registerOnWorkstateChangeMsgCallback(xsync_on_workstate_change_msg_t on_workstate_change_msg_cb) { m_on_workstate_change_msg_cb = on_workstate_change_msg_cb; }
xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) {
lock_guard<recursive_mutex> lock(lock_);
if (!m_xsync_reg_udp) return kxs_ec_lose_connect;
m_xsync_reg_udp->clearRxBuffer();
cmd->index = txpacket_index++;
XsyncNetAdd toadd = {m_xsync_ip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT};
xs_error_code_t ecode = //
m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr);
if (ecode != kxs_ec_success) {
return ecode;
}
XsyncNetAdd fromadd;
while (true) {
// ZLOGI(TAG, "start rx wait for rxdata");
ecode = m_xsync_reg_udp->receive((char *)rx_data, buffersize, fromadd, overtime_ms);
// ZLOGI(TAG, "end rx wait for rxdata");
if (ecode != kxs_ec_success) {
return ecode;
}
if (rx_data->index != cmd->index) {
// ZLOGI(TAG, "packet index error %d %d", cmd->index, rx_data->index);
continue;
}
break;
}
return (xs_error_code_t)rx_data->data[0];
}
xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, int32_t overtime_ms) { //
uint32_t readbak = 0;
return reg_write(regadd, regvalue, readbak, overtime_ms);
}
xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms) {
/**
* @brief
* 协议说明
*
* kxsync_packet_type_reg_write
* tx: regadd,regdata
* rx: ecode,regdata
*/
uint8_t txdata[128] = {0};
uint8_t rxdata[128] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd;
txpacket->index = txpacket_index++;
txpacket->cmd = kxsync_packet_type_reg_write;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = regvalue;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
if (ecode != kxs_ec_success) {
return ecode;
}
regbackvalue = rxpacket->data[1];
return ecode;
}
xs_error_code_t Xsync::reg_read(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms) {
/**
* @brief
* 协议说明
*
* kxsync_packet_type_reg_write
* tx: regadd,regdata
* rx: ecode,regdata
*/
uint8_t txdata[128] = {0};
uint8_t rxdata[128] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd;
txpacket->index = txpacket_index++;
txpacket->cmd = kxsync_packet_type_reg_read;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = regvalue;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
if (ecode != kxs_ec_success) {
return ecode;
}
regvalue = rxpacket->data[1];
return ecode;
}
xs_error_code_t Xsync::reg_read_muti(uint32_t regadd, uint32_t nreg, vector<uint32_t> &regvalues, int32_t overtime_ms) {
/**
* @brief
* 协议说明
*
* kxsync_packet_type_reg_read_regs
* tx: regstartadd,nreg
* rx: ecode,regdatas
*/
uint8_t txdata[128] = {0};
uint8_t rxdata[1280] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd;
txpacket->index = txpacket_index++;
txpacket->cmd = kxsync_packet_type_reg_read_regs;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = nreg;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
if (ecode != kxs_ec_success) {
return ecode;
}
if (rxpacket->ndata > 0) {
for (int i = 0; i < rxpacket->ndata - 1; i++) {
regvalues.push_back(rxpacket->data[i + 1]);
}
}
return ecode;
}
xs_error_code_t Xsync::readtimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t &timecode) {
uint32_t readbak = 0;
xs_error_code_t ecode = kxs_ec_success;
uint32_t tc0 = 0;
uint32_t tc1 = 0;
ecode = reg_read(reg0, tc0, 10);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_read(reg1, tc1, 10);
if (ecode != kxs_ec_success) return ecode;
Timecode64_t tc64;
tc64.tc0 = tc0;
tc64.tc1 = tc1;
timecode = timecode64ToXsyncTimeCode(tc64);
return ecode;
}
xs_error_code_t Xsync::writetimecode(uint32_t reg0, uint32_t reg1, XsyncTimecode_t timecode) {
uint32_t readbak = 0;
xs_error_code_t ecode = kxs_ec_success;
Timecode64_t tc64 = timecodeTo64(timecode);
ecode = reg_write(reg0, tc64.tc0, readbak, 10);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(reg1, tc64.tc1, readbak, 10);
if (ecode != kxs_ec_success) return ecode;
return ecode;
}
xs_error_code_t Xsync::readfreq(uint32_t reg, float &freqfloat) {
uint32_t freq_cnt = 0;
DO_XSYNC(reg_read(reg, freq_cnt));
if (freq_cnt == 0) {
freqfloat = 0;
}
if (freq_cnt != 0) {
uint32_t freq_10x = ((uint32_t)(1.0 / (freq_cnt * 1.0 / (10 * 1000 * 1000))) * 10 + 0.5); //+0.5是因为c++ 小数强转成整数时是取整,而非四舍五入
freqfloat = freq_10x / 10.0;
} else {
freqfloat = 0;
}
return kxs_ec_success;
}
void Xsync::parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
iflytop_xsync_event_report_packet_t *packet = (iflytop_xsync_event_report_packet_t *)data;
if (packet->eventid == ktimecode_report_event) {
Timecode64_t tc64;
tc64.tc0 = packet->data[0];
tc64.tc1 = packet->data[1];
XsyncTimecode_t timecode = timecode64ToXsyncTimeCode(tc64);
if (m_on_timecode_msg_cb) m_on_timecode_msg_cb(&timecode);
} else if (packet->eventid == kxsync_work_state_report_event) {
// 信号发生器状态改变
if (m_on_workstate_change_msg_cb) m_on_workstate_change_msg_cb(packet->data[0]);
}
}
void Xsync::parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
uint32_t count = 0;
uint32_t data0 = data[7];
uint32_t data1 = data[6];
uint32_t data2 = data[5];
uint32_t data3 = data[4];
count = data0 + (data1 << 8) + (data2 << 16) + (data3 << 24);
xysnc_camera_sync_data_t camera_sync_data;
camera_sync_data.frameIndex = count;
if (m_on_camera_sync_msg_cb) m_on_camera_sync_msg_cb(&camera_sync_data);
}
xs_error_code_t Xsync::Basic_generatorNewMac() { return doaction(xsync_stm32_action_generator_new_mac, 0, nullptr, 2000); }
xs_error_code_t Xsync::Basic_factoryReset() { return doaction(xsync_stm32_action_factory_reset, 0, nullptr, 1000); }
xs_error_code_t Xsync::Basic_reboot() { return doaction(xsync_stm32_action_Basic_reboot, 0, nullptr); }
xs_error_code_t Xsync::storageConfig() { return doaction(xsync_stm32_action_storage_cfg, 0, nullptr, 1000); }
xs_error_code_t Xsync::Basic_changeNetworkConfig(string ip, string mask, string gateway) {
uint32_t ip32 = 0;
uint32_t mask32 = 0;
uint32_t gateway32 = 0;
xs_error_code_t ecode;
bool suc = false;
ip32 = (uint32_t)ipToUint32(ip.c_str(), suc);
if (!suc) return kxs_ec_param_error;
mask32 = (uint32_t)ipToUint32(mask.c_str(), suc);
if (!suc) return kxs_ec_param_error;
gateway32 = (uint32_t)ipToUint32(gateway.c_str(), suc);
if (!suc) return kxs_ec_param_error;
uint32_t readbak = 0;
ecode = reg_write(reg::kstm32_ip, ip32, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(reg::kstm32_netmask, mask32, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(reg::kstm32_gw, gateway32, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = storageConfig();
if (ecode != kxs_ec_success) return ecode;
return kxs_ec_success;
}
xs_error_code_t Xsync::Basic_clearXsyncCameraSyncIndexCount() {
uint32_t readbak = 0;
return reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak);
}
xs_error_code_t Xsync::doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms) {
//
uint32_t readbak = 0;
xs_error_code_t ecode;
ecode = reg_write(reg::kstm32_action_val0, actionval, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(reg::kstm32_action0, action, readbak, overtime_ms);
if (ecode != kxs_ec_success) return ecode;
if (ackreturn) *ackreturn = readbak;
return ecode;
}
// xs_error_code_t Xsync::Basic_setGenlockFormat(GenlockFormat_t format) {
// DO_XSYNC(SigGenerator_setGenlockFormat(format));
// return kxs_ec_success;
// }
// xs_error_code_t Xsync::Basic_getGenlockFormat(GenlockFormat_t &format) {
// DO_XSYNC(SigGenerator_getGenlockFormat(format));
// return kxs_ec_success;
// }
// xs_error_code_t Xsync::Basic_setTimecodeFormat(TimecodeFormat_t format) {
// uint32_t readbak = 0;
// return kxs_ec_success;
// }
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t sig) {
uint32_t readbak = 0;
DO_XSYNC(reg_write(reg::kcamera_sync_out_camera_sync_select, sig, readbak, 10));
return kxs_ec_success;
}
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getTriggerSig(camera_sync_packet_generator_module::TriggerSigType_t &sig) {
uint32_t readbak = 0;
DO_XSYNC(reg_read(reg::kcamera_sync_out_camera_sync_select, readbak, 10));
sig = (camera_sync_packet_generator_module::TriggerSigType_t)readbak;
return kxs_ec_success;
}
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_setReportPeriod(uint32_t packetNum) {
uint32_t readbak = 0;
if (packetNum == 0) packetNum = 1;
DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count_report_period, packetNum, readbak, 10));
return kxs_ec_success;
}
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getReportPeriod(uint32_t &packetNum) {
uint32_t readbak = 0;
DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count_report_period, readbak, 10));
packetNum = readbak;
return kxs_ec_success;
}
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_getPacketIndex(uint32_t &index) {
uint32_t readbak = 0;
DO_XSYNC(reg_read(reg::kstm32_camera_sync_signal_count, readbak, 10));
index = readbak;
return kxs_ec_success;
}
xs_error_code_t Xsync::CameraSyncPacketGeneratorModule_clearPacketIndex() {
uint32_t readbak = 0;
DO_XSYNC(reg_write(reg::kstm32_camera_sync_signal_count, 0, readbak, 10));
return kxs_ec_success;
}
/*******************************************************************************
* 新接口 *
*******************************************************************************/
/*******************************************************************************
* TTLInputModule *
*******************************************************************************/
#define FREQ_CNT_TO_FREQ(cnt) ((cnt != 0) ? (uint32_t)(1.0 / (cnt * 1.0 / (10 * 1000 * 1000)) + 0.5) : 0) //+0.5是因为c++ 小数强转成整数时是取整,而非四舍五入
xs_error_code_t Xsync::TTLInputModule1_detectFreq(uint32_t &freq) {
uint32_t freq_cnt = 0;
DO_XSYNC(reg_read(reg::k_ttlin1_freq_detector_reg, freq_cnt, 10));
if (freq_cnt == 0) {
freq = 0;
}
freq = FREQ_CNT_TO_FREQ(freq_cnt);
return kxs_ec_success;
}
xs_error_code_t Xsync::TTLInputModule2_detectFreq(uint32_t &freq) {
uint32_t freq_cnt = 0;
DO_XSYNC(reg_read(reg::k_ttlin2_freq_detector_reg, freq_cnt, 10));
freq = FREQ_CNT_TO_FREQ(freq_cnt);
return kxs_ec_success;
}
xs_error_code_t Xsync::TTLInputModule3_detectFreq(uint32_t &freq) {
uint32_t freq_cnt = 0;
DO_XSYNC(reg_read(reg::k_ttlin3_freq_detector_reg, freq_cnt, 10));
freq = FREQ_CNT_TO_FREQ(freq_cnt);
return kxs_ec_success;
}
xs_error_code_t Xsync::TTLInputModule4_detectFreq(uint32_t &freq) {
uint32_t freq_cnt = 0;
DO_XSYNC(reg_read(reg::k_ttlin4_freq_detector_reg, freq_cnt, 10));
freq = FREQ_CNT_TO_FREQ(freq_cnt);
return kxs_ec_success;
}
/*******************************************************************************
* TTLOutputModule *
*******************************************************************************/
// 0:固定输出低电平,1:固定输出高电平,2:分频倍频模式,3:转发模式,4:测试模式
xs_error_code_t Xsync::TTLOutputModule1_setSrcSigType(SignalType_t source) {
if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
DO_XSYNC(reg_write(reg::kreg_ttlout1_signal_process_mode, 2, 10)); // 分频倍频模式
} else {
DO_XSYNC(reg_write(reg::kreg_ttlout1_signal_process_mode, 3, 10)); // 转发模式
}
REG_WRITE(reg::kreg_ttlout1_input_signal_select, source);
}
xs_error_code_t Xsync::TTLOutputModule2_setSrcSigType(SignalType_t source) {
if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
DO_XSYNC(reg_write(reg::kreg_ttlout2_signal_process_mode, 2, 10)); // 分频倍频模式
} else {
DO_XSYNC(reg_write(reg::kreg_ttlout2_signal_process_mode, 3, 10)); // 转发模式
}
REG_WRITE(reg::kreg_ttlout2_input_signal_select, source);
}
xs_error_code_t Xsync::TTLOutputModule3_setSrcSigType(SignalType_t source) {
if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
DO_XSYNC(reg_write(reg::kreg_ttlout3_signal_process_mode, 2, 10)); // 分频倍频模式
} else {
DO_XSYNC(reg_write(reg::kreg_ttlout3_signal_process_mode, 3, 10)); // 转发模式
}
REG_WRITE(reg::kreg_ttlout3_input_signal_select, source);
}
xs_error_code_t Xsync::TTLOutputModule4_setSrcSigType(SignalType_t source) {
if (source == SIGNAL_TTLIN1 || source == SIGNAL_TTLIN2 || source == SIGNAL_TTLIN3 || source == SIGNAL_TTLIN4) {
DO_XSYNC(reg_write(reg::kreg_ttlout4_signal_process_mode, 2, 10)); // 分频倍频模式
} else {
DO_XSYNC(reg_write(reg::kreg_ttlout4_signal_process_mode, 3, 10)); // 转发模式
}
REG_WRITE(reg::kreg_ttlout4_input_signal_select, source);
}
xs_error_code_t Xsync::TTLOutputModule1_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout1_input_signal_select, source); }
xs_error_code_t Xsync::TTLOutputModule2_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout2_input_signal_select, source); }
xs_error_code_t Xsync::TTLOutputModule3_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout3_input_signal_select, source); }
xs_error_code_t Xsync::TTLOutputModule4_getSrcSigType(SignalType_t &source) { REG_READ(reg::kreg_ttlout4_input_signal_select, source); }
xs_error_code_t Xsync::TTLOutputModule1_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout1_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule2_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout2_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule3_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout3_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule4_setFreqDivision(uint32_t div) { REG_WRITE(reg::kreg_ttlout4_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule1_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout1_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule2_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout2_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule3_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout3_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule4_getFreqDivision(uint32_t &div) { REG_READ(reg::kreg_ttlout4_pllout_freq_division_ctrl, div); }
xs_error_code_t Xsync::TTLOutputModule1_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout1_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule2_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout2_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule3_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout3_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule4_setFreqMultiplication(uint32_t multi) { REG_WRITE(reg::kreg_ttlout4_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule1_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout1_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule2_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout2_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule3_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout3_pllout_freq_multiplication_ctrl, multi); }
xs_error_code_t Xsync::TTLOutputModule4_getFreqMultiplication(uint32_t &multi) { REG_READ(reg::kreg_ttlout4_pllout_freq_multiplication_ctrl, multi); }
/*******************************************************************************
* TimecodeInputModule *
*******************************************************************************/
xs_error_code_t Xsync::ExternalTimecode_setSource(InputInterface_t src) {
if (src == INPUT_IF_TIMECODE_BNC) {
DO_XSYNC(reg_write(reg::external_timecode_sig_selt, 1, 10)); // 0:off,1:bnc,2:headphone
} else if (src == INPUT_IF_TIMECODE_HEADPHONE) {
DO_XSYNC(reg_write(reg::external_timecode_sig_selt, 2, 10)); // 0:off,1:bnc,2:headphone
} else if (src == INPUT_IF_OFF) {
DO_XSYNC(reg_write(reg::external_timecode_sig_selt, 0, 10)); // 0:off,1:bnc,2:headphone
} else {
return kxs_ec_param_error;
}
return kxs_ec_success;
}
xs_error_code_t Xsync::ExternalTimecode_getSource(InputInterface_t &timecode_select) {
uint32_t readbak = 0;
DO_XSYNC(reg_read(reg::external_timecode_sig_selt, readbak, 10));
if (readbak == 1) {
timecode_select = INPUT_IF_TIMECODE_BNC;
} else if (readbak == 2) {
timecode_select = INPUT_IF_TIMECODE_HEADPHONE;
} else if (readbak == 0) {
timecode_select = INPUT_IF_OFF;
} else {
timecode_select = INPUT_IF_OFF;
}
return kxs_ec_success;
}
xs_error_code_t Xsync::ExternalTimecode_setFormat(TimecodeFormat_t format) { REG_WRITE(reg::external_timecode_format, format); }
xs_error_code_t Xsync::ExternalTimecode_getFormat(TimecodeFormat_t &format) { REG_READ(reg::external_timecode_format, format); }
xs_error_code_t Xsync::ExternalTimecode_readCode(XsyncTimecode_t &timecode) { return readtimecode(reg::external_timecode_code0, reg::external_timecode_code1, timecode); }
/*******************************************************************************
* InternalTimecode *
*******************************************************************************/
xs_error_code_t Xsync::InternalTimecode_setFormat(TimecodeFormat_t format) { REG_WRITE(reg::internal_timecode_format, format); }
xs_error_code_t Xsync::InternalTimecode_getFormat(TimecodeFormat_t &format) { REG_READ(reg::internal_timecode_format, format); }
xs_error_code_t Xsync::InternalTimecode_setCode(XsyncTimecode_t timecode) {
DO_XSYNC(reg_write(reg::internal_timecode_en, 0));
DO_XSYNC(writetimecode(reg::internal_timecode_data0, reg::internal_timecode_data1, timecode));
DO_XSYNC(reg_write(reg::internal_timecode_en, 1));
return kxs_ec_success;
}
xs_error_code_t Xsync::InternalTimecode_getCode(XsyncTimecode_t &timecode) { return readtimecode(reg::internal_timecode_data0, reg::internal_timecode_data1, timecode); }
/*******************************************************************************
* SysTimecode *
*******************************************************************************/
xs_error_code_t Xsync::SysTimecode_setSource(uint32_t sig) { REG_WRITE(reg::sys_timecode_select, sig); }
xs_error_code_t Xsync::SysTimecode_getSource(uint32_t &sig) { REG_READ(reg::sys_timecode_select, sig); }
xs_error_code_t Xsync::SysTimecode_readFormat(TimecodeFormat_t &format) { REG_READ(reg::sys_timecode_format, format); }
xs_error_code_t Xsync::SysTimecode_readCode(XsyncTimecode_t &timecode) { return readtimecode(reg::sys_timecode_data0, reg::sys_timecode_data1, timecode); }
/*******************************************************************************
* TimecodeOutputModule *
*******************************************************************************/
xs_error_code_t Xsync::TimecodeOutputModule_setBncOutputLevel(int level) { REG_WRITE(reg::timecode_output_bnc_outut_level_select, level); }
xs_error_code_t Xsync::TimecodeOutputModule_getBncOutputLevel(int &level) { REG_READ(reg::timecode_output_bnc_outut_level_select, level); }
xs_error_code_t Xsync::TimecodeOutputModule_setHeadphoneOutputLevel(int level) { REG_WRITE(reg::timecode_output_headphone_outut_level_select, level); }
xs_error_code_t Xsync::TimecodeOutputModule_getHeadphoneOutputLevel(int &level) { REG_READ(reg::timecode_output_headphone_outut_level_select, level); }
/*******************************************************************************
* GENLOCK *
*******************************************************************************/
xs_error_code_t Xsync::ExternalGenlock_detectFreq(float &freq) { return readfreq(reg::external_genlock_freq, freq); }
xs_error_code_t Xsync::InternalGenlock_setFormat(GenlockFormat_t format) { return reg_write(reg::internal_genlock_format, format); }
xs_error_code_t Xsync::InternalGenlock_getFormat(GenlockFormat_t &format) { REG_READ(reg::internal_genlock_format, format); }
xs_error_code_t Xsync::SysGenlock_setSrc(SignalType_t sig) { return reg_write(reg::sys_genlock_source, sig); }
xs_error_code_t Xsync::SysGenlock_getSrc(SignalType_t &sig) { REG_READ(reg::sys_genlock_source, sig); }
xs_error_code_t Xsync::SysGenlock_readFreq(float &freq) { return readfreq(reg::sys_genlock_freq, freq); }
/*******************************************************************************
* INTERNAL_CLOCK *
*******************************************************************************/
xs_error_code_t Xsync::InternalClock_setFreq(float freq) {
double T = 1.0 / freq;
double T_ns = T * 1000 * 1000 * 1000;
double cnt = T_ns / 100 + 0.5; // 10MHZ <=> 100ns
uint32_t cnt_u32 = uint32_t(cnt);
return reg_write(reg::internal_clock_freq, cnt_u32);
return kxs_ec_success;
}
xs_error_code_t Xsync::InternalClock_getFreq(float &freq) { return readfreq(reg::internal_clock_freq, freq); }
/*******************************************************************************
* SysClock *
*******************************************************************************/
xs_error_code_t Xsync::SysClock_setSrc(SignalType_t sig) { return reg_write(reg::sys_clock_source, sig); }
xs_error_code_t Xsync::SysClock_getSrc(SignalType_t &sig) { REG_READ(reg::sys_clock_source, sig); }
xs_error_code_t Xsync::SysClock_setTriggerEdge(TriggerEdge_t edge) { return reg_write(reg::sys_clock_trigger_edge_select, edge); }
xs_error_code_t Xsync::SysClock_getTriggerEdge(TriggerEdge_t &edge) { return _reg_read(reg::sys_clock_trigger_edge_select, edge); }
xs_error_code_t Xsync::SysClock_setFreqDivision(uint32_t div) { return reg_write(reg::sys_clock_freq_division_ctrl, div); }
xs_error_code_t Xsync::SysClock_geFreqtDivision(uint32_t &div) { return _reg_read(reg::sys_clock_freq_division_ctrl, div); }
xs_error_code_t Xsync::SysClock_setFreqMultiplication(uint32_t muti) { return reg_write(reg::sys_clock_freq_multiplication_ctrl, muti); }
xs_error_code_t Xsync::SysClock_getFreqMultiplication(uint32_t &muti) { return _reg_read(reg::sys_clock_freq_multiplication_ctrl, muti); }
xs_error_code_t Xsync::SysClock_readFreq(float &freq) { return readfreq(reg::sys_clock_outfreq_detect, freq); }
xs_error_code_t Xsync::SysClock_readInputFreq(float &freq) { return readfreq(reg::sys_clock_infreq_detect, freq); }