You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

607 lines
20 KiB

#include "xsync.hpp"
#define ENABLE_LOG
#ifdef ENABLE_LOG
#include "../src/logger.hpp"
#endif
#define TAG "XSYNC"
using namespace iflytop;
static uint32_t ipToUint32(const std::string &ipAddress, bool &suc) {
uint32_t result = 0;
std::istringstream iss(ipAddress);
std::string segment;
int i = 0;
while (std::getline(iss, segment, '.')) {
uint32_t octet = std::stoi(segment);
if (octet > 255) {
suc = false;
return 0;
}
result |= (octet << ((3 - i) * 8));
i++;
}
if (i != 4) {
suc = false;
return 0;
}
suc = true;
uint32_t result_n = 0;
result_n |= ((result & 0xff000000) >> 24);
result_n |= ((result & 0x00ff0000) >> 8);
result_n |= ((result & 0x0000ff00) << 8);
result_n |= ((result & 0x000000ff) << 24);
return result_n;
}
namespace iflytop {
namespace xsync_internal_signal {
// level0 = 0, // 0
// level1 = 1, // 1
// ttlin1_module_raw_sig = 2, // ttl1输入模块原始信号
// ttlin1_module_sig_divide = 3, // ttl1输入模块分频信号
// ttlin2_module_raw_sig = 4, // ttl2输入模块原始信号
// ttlin2_module_sig_divide = 5, // ttl2输入模块分频信号
// ttlin3_module_raw_sig = 6, // ttl3输入模块原始信号
// ttlin3_module_sig_divide = 7, // ttl3输入模块分频信号
// ttlin4_module_raw_sig = 8, // ttl4输入模块原始信号
// ttlin4_module_sig_divide = 9, // ttl4输入模块分频信号
// genlockin_module_freq_sig = 10, // genlock输入模块频率信号
// timecodein_module_trigger_sig = 11, // timecode输入模块触发信号
// internal_camera_sync_sig = 12, // 内部相机同步信号
// internal_timecode_trigger_sig = 13, // 内部timecode触发信号
// internal_genlock_freq_sig = 14, // 内部genlock频率信号
// internal_work_state_sig = 15 // 内部工作状态信号
std::string signal_type_to_str(signal_type_t type) {
switch (type) {
case level0:
return "level0";
case level1:
return "level1";
case ttlin1_module_raw_sig:
return "ttlin1_module_raw_sig";
case ttlin1_module_sig_divide:
return "ttlin1_module_sig_divide";
case ttlin2_module_raw_sig:
return "ttlin2_module_raw_sig";
case ttlin2_module_sig_divide:
return "ttlin2_module_sig_divide";
case ttlin3_module_raw_sig:
return "ttlin3_module_raw_sig";
case ttlin3_module_sig_divide:
return "ttlin3_module_sig_divide";
case ttlin4_module_raw_sig:
return "ttlin4_module_raw_sig";
case ttlin4_module_sig_divide:
return "ttlin4_module_sig_divide";
case genlockin_module_freq_sig:
return "genlockin_module_freq_sig";
case timecodein_module_trigger_sig:
return "timecodein_module_trigger_sig";
case internal_camera_sync_sig:
return "internal_camera_sync_sig";
case internal_timecode_trigger_sig:
return "internal_timecode_trigger_sig";
case internal_genlock_freq_sig:
return "internal_genlock_freq_sig";
case internal_work_state_sig:
return "internal_work_state_sig";
default:
return "unknow";
}
return "unknow";
}
signal_type_t str_to_signal_type(std::string type) {
if (type == "level0") return level0;
if (type == "level1") return level1;
if (type == "ttlin1_module_raw_sig") return ttlin1_module_raw_sig;
if (type == "ttlin1_module_sig_divide") return ttlin1_module_sig_divide;
if (type == "ttlin2_module_raw_sig") return ttlin2_module_raw_sig;
if (type == "ttlin2_module_sig_divide") return ttlin2_module_sig_divide;
if (type == "ttlin3_module_raw_sig") return ttlin3_module_raw_sig;
if (type == "ttlin3_module_sig_divide") return ttlin3_module_sig_divide;
if (type == "ttlin4_module_raw_sig") return ttlin4_module_raw_sig;
if (type == "ttlin4_module_sig_divide") return ttlin4_module_sig_divide;
if (type == "genlockin_module_freq_sig") return genlockin_module_freq_sig;
if (type == "timecodein_module_trigger_sig") return timecodein_module_trigger_sig;
if (type == "internal_camera_sync_sig") return internal_camera_sync_sig;
if (type == "internal_timecode_trigger_sig") return internal_timecode_trigger_sig;
if (type == "internal_genlock_freq_sig") return internal_genlock_freq_sig;
if (type == "internal_work_state_sig") return internal_work_state_sig;
return level0;
}
} // namespace xsync_internal_signal
} // namespace iflytop
namespace iflytop {
namespace xsync_ttlout_module {
string output_signal_type_to_str(output_signal_type_t type) {
switch (type) {
case level0:
return "level0";
case level1:
return "level1";
case test_signal:
return "test_signal";
case input_signal:
return "input_signal";
case input_signal_mirror:
return "input_signal_mirror";
case trigger_mode_signal:
return "trigger_mode_signal";
case trigger_mode_signal_mirror:
return "trigger_mode_signal_mirror";
default:
return "unknow";
}
return "unknow";
}
output_signal_type_t str_to_output_signal_type(string type) {
if (type == "level0") return level0;
if (type == "level1") return level1;
if (type == "test_signal") return test_signal;
if (type == "input_signal") return input_signal;
if (type == "input_signal_mirror") return input_signal_mirror;
if (type == "trigger_mode_signal") return trigger_mode_signal;
if (type == "trigger_mode_signal_mirror") return trigger_mode_signal_mirror;
return level0;
}
} // namespace xsync_ttlout_module
} // namespace iflytop
Xsync::Xsync(/* args */) {}
Xsync &Xsync::Ins() {
static Xsync xsync;
return xsync;
}
void Xsync::initialize(I_XSUDPFactory *xsync_udp_factory) { m_xsync_udp_factory = xsync_udp_factory; }
xs_error_code_t Xsync::connect(string xsync_ip) {
lock_guard<recursive_mutex> lock(lock_);
m_xsync_ip = xsync_ip;
disConnect();
/**
* @brief 创建 m_xsync_reg_udp
*/
xs_error_code_t ecode = kxs_ec_success;
auto xsync_reg_udp = m_xsync_udp_factory->createXSUDP();
ecode = xsync_reg_udp->initialize("0.0.0.0", IFLYTOP_XSYNC_SERVICE_PC_PORT);
if (ecode != kxs_ec_success) {
return ecode;
}
/**
* @brief 创建 m_xsync_timecode_udp_listener
*/
auto xsync_timecode_udp_listener = m_xsync_udp_factory->createXSUDP();
ecode = xsync_timecode_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_TIMECODE_REPORT_PC_PORT);
if (ecode != kxs_ec_success) {
return ecode;
}
ecode = xsync_timecode_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseTimecodeMsgAndReport(from, data, length); });
if (ecode != kxs_ec_success) {
return ecode;
}
/**
* @brief 创建 m_xsync_camera_sync_udp_listener
*/
auto xsync_camera_sync_udp_listener = m_xsync_udp_factory->createXSUDP();
ecode = xsync_camera_sync_udp_listener->initialize("0.0.0.0", IFLYTOP_XSYNC_CAMERA_SYNC_PACKET_PC_PORT);
if (ecode != kxs_ec_success) {
return ecode;
}
ecode = xsync_camera_sync_udp_listener->startReceive([this](XsyncNetAdd &from, uint8_t *data, size_t length) { parseCameraSyncMsgAndReport(from, data, length); });
if (ecode != kxs_ec_success) {
return ecode;
}
m_xsync_reg_udp = xsync_reg_udp;
m_xsync_timecode_udp_listener = xsync_timecode_udp_listener;
m_xsync_camera_sync_udp_listener = xsync_camera_sync_udp_listener;
m_net_state = kxsync_net_state_connected;
return ecode;
}
xs_error_code_t Xsync::disConnect() {
lock_guard<recursive_mutex> lock(lock_);
if (m_xsync_reg_udp != nullptr) {
m_xsync_reg_udp->stopReceive();
m_xsync_reg_udp = nullptr;
}
if (m_xsync_timecode_udp_listener != nullptr) {
m_xsync_timecode_udp_listener->stopReceive();
m_xsync_timecode_udp_listener = nullptr;
}
if (m_xsync_camera_sync_udp_listener != nullptr) {
m_xsync_camera_sync_udp_listener->stopReceive();
m_xsync_camera_sync_udp_listener = nullptr;
}
m_net_state = kxsync_net_state_disconnect;
return kxs_ec_success;
}
xsync_net_state_t Xsync::getNetState() { return m_net_state; }
void Xsync::Basic_registerOnTimecodeMsgCallback(xsync_on_timecode_msg_t on_timecode_msg_cb) { m_on_timecode_msg_cb = on_timecode_msg_cb; }
void Xsync::Basic_registerOnCameraSyncMsgCallback(xsync_on_camera_sync_msg_t on_camera_sync_msg_cb) { m_on_camera_sync_msg_cb = on_camera_sync_msg_cb; }
xs_error_code_t Xsync::xsync_send_cmd_block(iflytop_xsync_packet_header_t *cmd, iflytop_xsync_packet_header_t *rx_data, int32_t buffersize, int32_t overtime_ms) {
lock_guard<recursive_mutex> lock(lock_);
if (!m_xsync_reg_udp) return kxs_ec_lose_connect;
m_xsync_reg_udp->clearRxBuffer();
cmd->index = txpacket_index++;
XsyncNetAdd toadd = {m_xsync_ip, IFLYTOP_XSYNC_SERVICE_XSYNC_PORT};
xs_error_code_t ecode = //
m_xsync_reg_udp->sendto(toadd, (const char *)cmd, sizeof(iflytop_xsync_packet_header_t) + cmd->ndata * 4, nullptr);
if (ecode != kxs_ec_success) {
return ecode;
}
XsyncNetAdd fromadd;
while (true) {
// ZLOGI(TAG, "start rx wait for rxdata");
ecode = m_xsync_reg_udp->receive((char *)rx_data, buffersize, fromadd, overtime_ms);
// ZLOGI(TAG, "end rx wait for rxdata");
if (ecode != kxs_ec_success) {
return ecode;
}
if (rx_data->index != cmd->index) {
// ZLOGI(TAG, "packet index error %d %d", cmd->index, rx_data->index);
continue;
}
break;
}
return (xs_error_code_t)rx_data->data[0];
}
xs_error_code_t Xsync::reg_write(uint32_t regadd, uint32_t regvalue, uint32_t &regbackvalue, int32_t overtime_ms) {
/**
* @brief
* 协议说明
*
* kxsync_packet_type_reg_write
* tx: regadd,regdata
* rx: ecode,regdata
*/
uint8_t txdata[128] = {0};
uint8_t rxdata[128] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd;
txpacket->index = txpacket_index++;
txpacket->cmd = kxsync_packet_type_reg_write;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = regvalue;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
if (ecode != kxs_ec_success) {
return ecode;
}
regbackvalue = rxpacket->data[1];
return ecode;
}
xs_error_code_t Xsync::reg_read(uint32_t regadd, uint32_t &regvalue, int32_t overtime_ms) {
/**
* @brief
* 协议说明
*
* kxsync_packet_type_reg_write
* tx: regadd,regdata
* rx: ecode,regdata
*/
uint8_t txdata[128] = {0};
uint8_t rxdata[128] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd;
txpacket->index = txpacket_index++;
txpacket->cmd = kxsync_packet_type_reg_read;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = regvalue;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
if (ecode != kxs_ec_success) {
return ecode;
}
regvalue = rxpacket->data[1];
return ecode;
}
xs_error_code_t Xsync::reg_read_muti(uint32_t regadd, uint32_t nreg, vector<uint32_t> &regvalues, int32_t overtime_ms) {
/**
* @brief
* 协议说明
*
* kxsync_packet_type_reg_read_regs
* tx: regstartadd,nreg
* rx: ecode,regdatas
*/
uint8_t txdata[128] = {0};
uint8_t rxdata[1280] = {0};
iflytop_xsync_packet_header_t *txpacket = (iflytop_xsync_packet_header_t *)txdata;
iflytop_xsync_packet_header_t *rxpacket = (iflytop_xsync_packet_header_t *)rxdata;
txpacket->type = kxsync_packet_type_cmd;
txpacket->index = txpacket_index++;
txpacket->cmd = kxsync_packet_type_reg_read_regs;
txpacket->ndata = 2;
txpacket->data[0] = regadd;
txpacket->data[1] = nreg;
auto ecode = xsync_send_cmd_block(txpacket, rxpacket, sizeof(rxdata), overtime_ms);
if (ecode != kxs_ec_success) {
return ecode;
}
if (rxpacket->ndata > 0) {
for (int i = 0; i < rxpacket->ndata - 1; i++) {
regvalues.push_back(rxpacket->data[i + 1]);
}
}
return ecode;
}
void Xsync::parseTimecodeMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
//
iflytop_timecode_report_packet_t *packet = (iflytop_timecode_report_packet_t *)data;
xysnc_timecode_t timecode;
/**
* @brief
*
* 01 02 03 04 01 02 03 04
*
*/
uint8_t frameuints = packet->timecode0 & 0x0f;
uint8_t frame10s = (packet->timecode0 >> 8) & 0x3;
uint8_t seconduints = (packet->timecode0 >> 16) & 0x0f;
uint8_t second10s = (packet->timecode0 >> 24) & 0x03;
uint8_t minuteuints = packet->timecode1 & 0x0f;
uint8_t minute10s = (packet->timecode1 >> 8) & 0x03;
uint8_t houruints = (packet->timecode1 >> 16) & 0x0f;
uint8_t hour10s = (packet->timecode1 >> 24) & 0x03;
timecode.hour = hour10s * 10 + houruints;
timecode.minute = minute10s * 10 + minuteuints;
timecode.second = second10s * 10 + seconduints;
timecode.frame = frame10s * 10 + frameuints;
if (m_on_timecode_msg_cb) m_on_timecode_msg_cb(&timecode);
}
void Xsync::parseCameraSyncMsgAndReport(XsyncNetAdd &from, uint8_t *data, size_t length) {
uint32_t count = 0;
uint32_t data0 = data[7];
uint32_t data1 = data[6];
uint32_t data2 = data[5];
uint32_t data3 = data[4];
count = data0 + (data1 << 8) + (data2 << 16) + (data3 << 24);
xysnc_camera_sync_data_t camera_sync_data;
camera_sync_data.frameIndex = count;
if (m_on_camera_sync_msg_cb) m_on_camera_sync_msg_cb(&camera_sync_data);
}
// xsync_stm32_action_generator_new_mac, //
// xsync_stm32_action_factory_reset, //
// xsync_stm32_action_Basic_reboot, //
// xsync_stm32_action_storage_cfg,
xs_error_code_t Xsync::Basic_generatorNewMac() { return doaction(xsync_stm32_action_generator_new_mac, 0, nullptr, 2000); }
xs_error_code_t Xsync::Basic_factoryReset() { return doaction(xsync_stm32_action_factory_reset, 0, nullptr, 1000); }
xs_error_code_t Xsync::Basic_reboot() { return doaction(xsync_stm32_action_Basic_reboot, 0, nullptr); }
xs_error_code_t Xsync::storageConfig() { return doaction(xsync_stm32_action_storage_cfg, 0, nullptr, 1000); }
xs_error_code_t Xsync::Basic_changeNetworkConfig(string ip, string mask, string gateway) {
uint32_t ip32 = 0;
uint32_t mask32 = 0;
uint32_t gateway32 = 0;
xs_error_code_t ecode;
bool suc = false;
ip32 = (uint32_t)ipToUint32(ip.c_str(), suc);
if (!suc) return kxs_ec_param_error;
mask32 = (uint32_t)ipToUint32(mask.c_str(), suc);
if (!suc) return kxs_ec_param_error;
gateway32 = (uint32_t)ipToUint32(gateway.c_str(), suc);
if (!suc) return kxs_ec_param_error;
uint32_t readbak = 0;
ecode = reg_write(kxsync_reg_stm32_ip, ip32, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(kxsync_reg_stm32_netmask, mask32, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(kxsync_reg_stm32_gw, gateway32, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = storageConfig();
if (ecode != kxs_ec_success) return ecode;
return kxs_ec_success;
}
xs_error_code_t Xsync::Basic_clearXsyncCameraSyncIndexCount() {
uint32_t readbak = 0;
return reg_write(kxsync_reg_stm32_camera_sync_signal_count, 0, readbak);
}
xs_error_code_t Xsync::doaction(uint32_t action, uint32_t actionval, uint32_t *ackreturn, int32_t overtime_ms) {
//
uint32_t readbak = 0;
xs_error_code_t ecode;
ecode = reg_write(kxsync_reg_stm32_action_val0, actionval, readbak);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_write(kxsync_reg_stm32_action0, action, readbak, overtime_ms);
if (ecode != kxs_ec_success) return ecode;
if (ackreturn) *ackreturn = readbak;
return ecode;
}
/*******************************************************************************
* TTLOutputModule *
*******************************************************************************/
// .reg0(reg_input_signal_select),
// .reg1(reg_output_signal_select),
// .reg2(reg_config),
// .reg3(reg_pulse_mode_valid_len),
// .reg4(reg_pulse_mode_trigger_delay)
xs_error_code_t Xsync::TTLOutputModule_getRegOff(int32_t index, uint32_t &regadd) {
switch (index) {
case 1:
regadd = REG_ADD_OFF_TTLOUT1;
break;
case 2:
regadd = REG_ADD_OFF_TTLOUT2;
break;
case 3:
regadd = REG_ADD_OFF_TTLOUT3;
break;
case 4:
regadd = REG_ADD_OFF_TTLOUT4;
break;
default:
return kxs_ec_param_error;
}
return kxs_ec_success;
}
xs_error_code_t Xsync::TTLOutputModule_setInputSigType(int32_t index, xsync_internal_signal::signal_type_t source) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
return reg_write(regadd + 0, source, readbak, 10);
}
xs_error_code_t Xsync::TTLOutputModule_getInputSigType(int32_t index, xsync_internal_signal::signal_type_t &source) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_read(regadd + 0, readbak, 10);
if (ecode != kxs_ec_success) return ecode;
source = (xsync_internal_signal::signal_type_t)readbak;
return ecode;
}
xs_error_code_t Xsync::TTLOutputModule_setOutputSigType(int32_t index, xsync_ttlout_module::output_signal_type_t output_type) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
return reg_write(regadd + 1, output_type, readbak, 10);
}
xs_error_code_t Xsync::TTLOutputModule_getOutputSigType(int32_t index, xsync_ttlout_module::output_signal_type_t &output_type) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_read(regadd + 1, readbak, 10);
if (ecode != kxs_ec_success) return ecode;
output_type = (xsync_ttlout_module::output_signal_type_t)readbak;
return ecode;
}
xs_error_code_t Xsync::TTLOutputModule_setTriggerModePulseWidth(int32_t index, uint32_t pulse_width_ms) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
uint32_t pluse_width = pulse_width_ms * 1000; // 1MHZ计数
return reg_write(regadd + 3, pluse_width, readbak, 10);
}
xs_error_code_t Xsync::TTLOutputModule_getTriggerModePulseWidth(int32_t index, uint32_t &pulse_width_ms) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_read(regadd + 3, readbak, 10);
if (ecode != kxs_ec_success) return ecode;
pulse_width_ms = readbak / 1000;
return ecode;
}
xs_error_code_t Xsync::TTLOutputModule_setTriggerModePulseDelay(int32_t index, uint32_t pulse_delay_ms) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
uint32_t pulse_delay = pulse_delay_ms * 1000; // 1MHZ计数
return reg_write(regadd + 4, pulse_delay, readbak, 10);
}
xs_error_code_t Xsync::TTLOutputModule_getTriggerModePulseDelay(int32_t index, uint32_t &pulse_delay_ms) {
uint32_t regadd = REG_ADD_OFF_TTLOUT1;
xs_error_code_t ecode = kxs_ec_success;
uint32_t readbak = 0;
ecode = TTLOutputModule_getRegOff(index, regadd);
if (ecode != kxs_ec_success) return ecode;
ecode = reg_read(regadd + 4, readbak, 10);
if (ecode != kxs_ec_success) return ecode;
pulse_delay_ms = readbak / 1000;
return ecode;
}