|
|
#include "hardware.hpp"
#include "adc.h"
#include "tim.h"
#include "zsdk/zcanreceiver/zcanreceiver.hpp"
#define TAG "HARD"
using namespace iflytop;
/***********************************************************************************************************************
* EXT * ***********************************************************************************************************************/
static osThreadId H2O2CaptureThreadId; static osThreadId AlarmLightThreadId;
/***********************************************************************************************************************
* FUNC * ***********************************************************************************************************************/ static void c_onH2O2CaptureThread(void const* argument) { Hardware::ins().onH2O2CaptureThread(); } static void c_onAlarmLightThread(void const* argument) { Hardware::ins().onAlarmLightThread(); }
int32_t Hardware::readSwitchGroup() { int32_t id = 0; id |= m_switch_group0.read() << 0; id |= m_switch_group1.read() << 1; id |= m_switch_group2.read() << 2; id |= m_switch_group3.read() << 3; id |= m_switch_group4.read() << 4; }
void Hardware::setAlarmLight(bool r, bool g, bool y) { m_alarmLightR.write(r); m_alarmLightG.write(g); m_alarmLightY.write(y); }
void Hardware::setAlarmLight(light_state_t state) { m_alarmLightState = state; }
void Hardware::init() { m_alarmLightR.initAsOutput(PD7, kxs_gpio_pullup, true, false); m_alarmLightG.initAsOutput(PD9, kxs_gpio_pullup, true, false); m_alarmLightY.initAsOutput(PD8, kxs_gpio_pullup, true, false);
m_switch_group0.initAsInput(PE0, kxs_gpio_nopull, kxs_gpio_no_irq, false); m_switch_group1.initAsInput(PE1, kxs_gpio_nopull, kxs_gpio_no_irq, false); m_switch_group2.initAsInput(PE3, kxs_gpio_nopull, kxs_gpio_no_irq, false); m_switch_group3.initAsInput(PE6, kxs_gpio_nopull, kxs_gpio_no_irq, false); m_switch_group4.initAsInput(PE8, kxs_gpio_nopull, kxs_gpio_no_irq, false);
id_from_machine.initAsInput(PE8, kxs_gpio_nopull, kxs_gpio_no_irq, false);
ZLOGI(TAG, "switch group:%d id_from_machine %d", readSwitchGroup(), id_from_machine.read());
setAlarmLight(kdisconnected); /**
* @brief 探测HMP110 */ osDelay(2000); // 等待传感器上电
#ifdef H2O2_SENSOR_TYPE_HMP110
ZASSERT(huart2.Init.BaudRate == 19200); ZASSERT(huart2.Init.StopBits == UART_STOPBITS_2); m_H2o2Sensor_ModbusBlockHost.initialize(&huart2); m_H2o2Sensor_H2O2Adc.initialize(&hadc1, ADC_CHANNEL_10); //
m_H2o2Sensor_HMP110.init(&m_H2o2Sensor_ModbusBlockHost);
if (m_H2o2Sensor_HMP110.ping(1)) { m_h2o2sensor_detectId = 1; } if (m_H2o2Sensor_HMP110.ping(240)) { m_h2o2sensor_detectId = 240; } m_H2o2Sensor_HMP110.setid(m_h2o2sensor_detectId); ZLOGI(TAG, "H2O2 HMP110 Sensor detect id: %d", m_h2o2sensor_detectId);
#endif
#ifdef H2O2_SENSOR_TYPE_HPP272
ZASSERT(huart3.Init.BaudRate == 19200); ZASSERT(huart3.Init.StopBits == UART_STOPBITS_2); m_H2o2Sensor_ModbusBlockHost.initialize(&huart3); m_H2o2Sensor_HPP272.init(&m_H2o2Sensor_ModbusBlockHost);
if (m_H2o2Sensor_HPP272.ping(1)) { m_h2o2sensor_detectId = 1; } if (m_H2o2Sensor_HPP272.ping(240)) { m_h2o2sensor_detectId = 240; }
m_H2o2Sensor_HPP272.setid(m_h2o2sensor_detectId); ZLOGI(TAG, "H2O2 HPP272 Sensor detect id: %d", m_h2o2sensor_detectId);
#endif
osThreadDef(H2O2CaptureThread, c_onH2O2CaptureThread, osPriorityNormal, 0, 1024); H2O2CaptureThreadId = osThreadCreate(osThread(H2O2CaptureThread), NULL);
osThreadDef(AlarmLightThread, c_onAlarmLightThread, osPriorityNormal, 0, 1024); AlarmLightThreadId = osThreadCreate(osThread(AlarmLightThread), NULL); }
/***********************************************************************************************************************
* H2O2 * ***********************************************************************************************************************/
bool Hardware::h2o2_sensor_is_online() { #ifdef H2O2_SENSOR_TYPE_HMP110
if (m_h2o2sensor_detectId <= 0) return false; int32_t ecode = m_H2o2Sensor_HMP110.read_cache_errorcode(); if (ecode == -1) return false; #endif
#ifdef H2O2_SENSOR_TYPE_HPP272
if (m_h2o2sensor_detectId <= 0) return false; int32_t ecode = m_H2o2Sensor_HPP272.read_cache_errorcode(); if (ecode == -1) return false; #endif
return true; } int32_t Hardware::h2o2_sensor_read_calibration_date(int32_t* year, int32_t* month, int32_t* day) { //
*year = 1; *month = 2; *day = 3; return 0; } int32_t Hardware::h2o2_sensor_read_sub_ic_errorcode() { //
#ifdef H2O2_SENSOR_TYPE_HPP272
return m_H2o2Sensor_HPP272.read_cache_errorcode(); #endif
#ifdef H2O2_SENSOR_TYPE_HMP110
return m_H2o2Sensor_HMP110.read_cache_errorcode(); #endif
} int32_t Hardware::h2o2_sensor_read_sub_ic_reg(int32_t add, uint16_t* val, size_t len) { //
#ifdef H2O2_SENSOR_TYPE_HPP272
if (m_H2o2Sensor_HPP272.read_reg(add, val, len)) { return 0; } #endif
#ifdef H2O2_SENSOR_TYPE_HMP110
if (m_H2o2Sensor_HMP110.read_reg(add, val, len)) { return 0; } #endif
return kerr_subdevice_offline; } int32_t Hardware::h2o2_sensor_data(report_h2o2_data_t* readdata) { #ifdef H2O2_SENSOR_TYPE_HMP110
int32_t ecode = m_H2o2Sensor_HMP110.read_cache_errorcode(); int32_t h2o2adcVal = m_H2o2Sensor_H2O2Adc.getCacheVal(); HMP110::hmp110_sensordata_t sensordata; m_H2o2Sensor_HMP110.read_cache_sensor_data(&sensordata);
// float mv = adcv / 4095.0 * 3.3 * 1000;
// float ma = mv / 150.0;
// float ppm = (ma - 4) / (20 - 4) * 2000;
int32_t h2o2ma = (h2o2adcVal / 4095.0 * 3.3 * 1000) / 150.0; int32_t h2o2ppm = (h2o2ma - 4) / (20 - 4) * 2000;
readdata->sensor_error = ecode != 0; readdata->h2o2 = h2o2ppm; readdata->humid = sensordata.rh; readdata->temp = sensordata.temp; readdata->saturation = 0;
ZLOGI(TAG, "ecode: %d ppm:%d, rh:%d, temp:%d, df_ptemp:%d, ah:%d, mr:%d, wbt:%d, eh:%d", //
ecode, //
h2o2ppm, //
sensordata.rh, //
sensordata.temp, //
sensordata.df_ptemp, //
sensordata.ah, //
sensordata.mr, //
sensordata.wet_bulb_temp, //
sensordata.enthalpy);
return 0; #endif
#ifdef H2O2_SENSOR_TYPE_HPP272
int32_t ecode = m_H2o2Sensor_HPP272.read_cache_errorcode(); HPP272::hpp272_data_t sensordata; m_H2o2Sensor_HPP272.read_cache_sensor_data(&sensordata);
readdata->sensor_error = ecode != 0; readdata->h2o2 = sensordata.hydrogen_peroxide_volume / 10.0; readdata->humid = sensordata.relative_humidity / 10.0; readdata->temp = sensordata.temperature1 / 10.0; readdata->saturation = sensordata.h2o_h2o2_rs / 10.0;
ZLOGI(TAG, "h2o2 %d, humid %d, temp %d, sat %d", sensordata.hydrogen_peroxide_volume / 10, //
sensordata.relative_humidity / 10, //
sensordata.temperature1 / 10, //
sensordata.h2o_h2o2_rs / 10);
return 0; #endif
}
void Hardware::onH2O2CaptureThread() { while (1) { osDelay(1000);
#ifdef H2O2_SENSOR_TYPE_HMP110
if (m_h2o2sensor_detectId > 0) { m_H2o2Sensor_H2O2Adc.updateAdcValToCache(); m_H2o2Sensor_HMP110.updateSensorDataAndErrorcode(); } #endif
#ifdef H2O2_SENSOR_TYPE_HPP272
if (m_h2o2sensor_detectId > 0) { m_H2o2Sensor_HPP272.updateSensorDataAndErrorcode(); } #endif
} }
void Hardware::onAlarmLightThread() { while (1) { osDelay(500); if (m_alarmLightState == kdisconnected) { static bool state; setAlarmLight(false, state, false); state = !state; } else if (m_alarmLightState == kconnected) { setAlarmLight(true, true, false); } else if (m_alarmLightState == kerror) { setAlarmLight(true, false, false); } } }
|