You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

409 lines
7.3 KiB

1 year ago
2 months ago
1 year ago
  1. #include "chip_helper.hpp"
  2. #include "cmsis_os.h"
  3. #include "sdk\basic\logger.hpp"
  4. extern "C" {
  5. static uint8_t g_port_exit_critical_count;
  6. void chip_critical_enter(void) { portENTER_CRITICAL(); }
  7. void chip_critical_exit(void) { portEXIT_CRITICAL(); }
  8. GPIO_TypeDef* chip_get_gpio(Pin_t pin) {
  9. int port = pin >> 4;
  10. switch (port) {
  11. case (PA0 >> 4):
  12. #ifdef GPIOA
  13. return GPIOA;
  14. #endif
  15. break;
  16. case (PB0 >> 4):
  17. #ifdef GPIOB
  18. return GPIOB;
  19. #endif
  20. break;
  21. case (PC0 >> 4):
  22. #ifdef GPIOC
  23. return GPIOC;
  24. #endif
  25. break;
  26. case (PD0 >> 4):
  27. #ifdef GPIOD
  28. return GPIOD;
  29. #endif
  30. break;
  31. case (PE0 >> 4):
  32. #ifdef GPIOE
  33. return GPIOE;
  34. #endif
  35. break;
  36. case (PF0 >> 4):
  37. #ifdef GPIOF
  38. return GPIOF;
  39. #endif
  40. break;
  41. case (PG0 >> 4):
  42. #ifdef GPIOG
  43. return GPIOG;
  44. #endif
  45. break;
  46. default:
  47. break;
  48. }
  49. return NULL;
  50. }
  51. uint16_t chip_get_pinoff(Pin_t pin) {
  52. uint16_t pinoff = pin & 0x0F;
  53. switch (pinoff) {
  54. case 0:
  55. return GPIO_PIN_0;
  56. case 1:
  57. return GPIO_PIN_1;
  58. case 2:
  59. return GPIO_PIN_2;
  60. case 3:
  61. return GPIO_PIN_3;
  62. case 4:
  63. return GPIO_PIN_4;
  64. case 5:
  65. return GPIO_PIN_5;
  66. case 6:
  67. return GPIO_PIN_6;
  68. case 7:
  69. return GPIO_PIN_7;
  70. case 8:
  71. return GPIO_PIN_8;
  72. case 9:
  73. return GPIO_PIN_9;
  74. case 10:
  75. return GPIO_PIN_10;
  76. case 11:
  77. return GPIO_PIN_11;
  78. case 12:
  79. return GPIO_PIN_12;
  80. case 13:
  81. return GPIO_PIN_13;
  82. case 14:
  83. return GPIO_PIN_14;
  84. case 15:
  85. return GPIO_PIN_15;
  86. default:
  87. break;
  88. };
  89. return 0;
  90. }
  91. // TIM2
  92. // TIM3
  93. // TIM4
  94. // TIM5
  95. // TIM6
  96. // TIM7
  97. // TIM12
  98. // TIM13
  99. // TIM14
  100. // TIM1
  101. // TIM8
  102. // TIM9
  103. // TIM10
  104. // TIM11
  105. // TIM_CR1_CEN_Pos
  106. const char* chip_tim_get_name(TIM_TypeDef* tim) {
  107. #ifdef TIM1
  108. if (tim == TIM1) {
  109. return "TIM1";
  110. }
  111. #endif
  112. #ifdef TIM2
  113. if (tim == TIM2) {
  114. return "TIM2";
  115. }
  116. #endif
  117. #ifdef TIM3
  118. if (tim == TIM3) {
  119. return "TIM3";
  120. }
  121. #endif
  122. #ifdef TIM4
  123. if (tim == TIM4) {
  124. return "TIM4";
  125. }
  126. #endif
  127. #ifdef TIM5
  128. if (tim == TIM5) {
  129. return "TIM5";
  130. }
  131. #endif
  132. #ifdef TIM6
  133. if (tim == TIM6) {
  134. return "TIM6";
  135. }
  136. #endif
  137. #ifdef TIM7
  138. if (tim == TIM7) {
  139. return "TIM7";
  140. }
  141. #endif
  142. #ifdef TIM8
  143. if (tim == TIM8) {
  144. return "TIM8";
  145. }
  146. #endif
  147. #ifdef TIM9
  148. if (tim == TIM9) {
  149. return "TIM9";
  150. }
  151. #endif
  152. #ifdef TIM10
  153. if (tim == TIM10) {
  154. return "TIM10";
  155. }
  156. #endif
  157. #ifdef TIM11
  158. if (tim == TIM11) {
  159. return "TIM11";
  160. }
  161. #endif
  162. #ifdef TIM12
  163. if (tim == TIM12) {
  164. return "TIM12";
  165. }
  166. #endif
  167. #ifdef TIM13
  168. if (tim == TIM13) {
  169. return "TIM13";
  170. }
  171. #endif
  172. #ifdef TIM14
  173. if (tim == TIM14) {
  174. return "TIM14";
  175. }
  176. #endif
  177. return "unknowntim";
  178. }
  179. const char* chip_gpio_group_get_name(GPIO_TypeDef* gpio_group) {
  180. if (gpio_group == GPIOA) {
  181. return "GPIOA";
  182. }
  183. if (gpio_group == GPIOB) {
  184. return "GPIOB";
  185. }
  186. if (gpio_group == GPIOC) {
  187. return "GPIOC";
  188. }
  189. if (gpio_group == GPIOD) {
  190. return "GPIOD";
  191. }
  192. if (gpio_group == GPIOE) {
  193. return "GPIOE";
  194. }
  195. if (gpio_group == GPIOF) {
  196. return "GPIOF";
  197. }
  198. if (gpio_group == GPIOG) {
  199. return "GPIOG";
  200. }
  201. return "unknown gpio group";
  202. }
  203. const char* chip_pinoff_get_name(uint16_t pinoff) {
  204. if (pinoff == GPIO_PIN_0) {
  205. return "0";
  206. }
  207. if (pinoff == GPIO_PIN_1) {
  208. return "1";
  209. }
  210. if (pinoff == GPIO_PIN_2) {
  211. return "2";
  212. }
  213. if (pinoff == GPIO_PIN_3) {
  214. return "3";
  215. }
  216. if (pinoff == GPIO_PIN_4) {
  217. return "4";
  218. }
  219. if (pinoff == GPIO_PIN_5) {
  220. return "5";
  221. }
  222. if (pinoff == GPIO_PIN_6) {
  223. return "6";
  224. }
  225. if (pinoff == GPIO_PIN_7) {
  226. return "7";
  227. }
  228. if (pinoff == GPIO_PIN_8) {
  229. return "8";
  230. }
  231. if (pinoff == GPIO_PIN_9) {
  232. return "9";
  233. }
  234. if (pinoff == GPIO_PIN_10) {
  235. return "10";
  236. }
  237. if (pinoff == GPIO_PIN_11) {
  238. return "11";
  239. }
  240. if (pinoff == GPIO_PIN_12) {
  241. return "12";
  242. }
  243. if (pinoff == GPIO_PIN_13) {
  244. return "13";
  245. }
  246. if (pinoff == GPIO_PIN_14) {
  247. return "14";
  248. }
  249. if (pinoff == GPIO_PIN_15) {
  250. return "15";
  251. }
  252. return "unknown pinoff";
  253. }
  254. // // no tim1
  255. // TIM2_IRQn
  256. // TIM3_IRQn
  257. // TIM4_IRQn
  258. // TIM5_IRQn
  259. // TIM6_DAC_IRQn
  260. // TIM7_IRQn
  261. // //no tim8
  262. // TIM1_BRK_TIM9_IRQn
  263. // TIM1_UP_TIM10_IRQn
  264. // TIM1_TRG_COM_TIM11_IRQn
  265. // TIM8_BRK_TIM12_IRQn
  266. // TIM8_UP_TIM13_IRQn
  267. // TIM8_TRG_COM_TIM14_IRQn
  268. IRQn_Type chip_tim_get_irq(TIM_HandleTypeDef* tim) {
  269. if (tim->Instance == TIM1) {
  270. EARLY_ASSERT(false);
  271. }
  272. if (tim->Instance == TIM2) {
  273. return TIM2_IRQn;
  274. }
  275. if (tim->Instance == TIM3) {
  276. return TIM3_IRQn;
  277. }
  278. if (tim->Instance == TIM4) {
  279. return TIM4_IRQn;
  280. }
  281. if (tim->Instance == TIM5) {
  282. return TIM5_IRQn;
  283. }
  284. if (tim->Instance == TIM6) {
  285. return TIM6_DAC_IRQn;
  286. }
  287. if (tim->Instance == TIM7) {
  288. return TIM7_IRQn;
  289. }
  290. if (tim->Instance == TIM8) {
  291. EARLY_ASSERT(false);
  292. }
  293. if (tim->Instance == TIM9) {
  294. return TIM1_BRK_TIM9_IRQn;
  295. }
  296. if (tim->Instance == TIM10) {
  297. return TIM1_UP_TIM10_IRQn;
  298. }
  299. if (tim->Instance == TIM11) {
  300. return TIM1_TRG_COM_TIM11_IRQn;
  301. }
  302. if (tim->Instance == TIM12) {
  303. return TIM8_BRK_TIM12_IRQn;
  304. }
  305. if (tim->Instance == TIM13) {
  306. return TIM8_UP_TIM13_IRQn;
  307. }
  308. if (tim->Instance == TIM14) {
  309. return TIM8_TRG_COM_TIM14_IRQn;
  310. }
  311. //
  312. EARLY_ASSERT(false);
  313. return (IRQn_Type)0;
  314. }
  315. uint32_t chip_get_timer_clock_sorce_freq(TIM_HandleTypeDef* tim) {
  316. uint32_t timClkFreq = 0;
  317. #if 0
  318. uint32_t pclk1Freq = HAL_RCC_GetPCLK1Freq();
  319. uint32_t pclk2Freq = HAL_RCC_GetPCLK2Freq();
  320. uint32_t sysClkFreq = HAL_RCC_GetSysClockFreq();
  321. #endif
  322. uint32_t pFLatency;
  323. RCC_ClkInitTypeDef clkconfig;
  324. HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
  325. bool isAPB2 = false;
  326. #ifdef TIM1
  327. if (tim->Instance == TIM1) isAPB2 = true;
  328. #endif
  329. #ifdef TIM8
  330. if (tim->Instance == TIM8) isAPB2 = true;
  331. #endif
  332. #ifdef TIM9
  333. if (tim->Instance == TIM9) isAPB2 = true;
  334. #endif
  335. #ifdef TIM10
  336. if (tim->Instance == TIM10) isAPB2 = true;
  337. #endif
  338. #ifdef TIM11
  339. if (tim->Instance == TIM11) isAPB2 = true;
  340. #endif
  341. if (isAPB2) {
  342. if (clkconfig.APB2CLKDivider == RCC_HCLK_DIV1) {
  343. timClkFreq = HAL_RCC_GetPCLK2Freq();
  344. } else {
  345. timClkFreq = 2 * HAL_RCC_GetPCLK2Freq();
  346. }
  347. } else {
  348. if (clkconfig.APB1CLKDivider == RCC_HCLK_DIV1) {
  349. timClkFreq = HAL_RCC_GetPCLK1Freq();
  350. } else {
  351. timClkFreq = 2 * HAL_RCC_GetPCLK1Freq();
  352. }
  353. }
  354. return timClkFreq;
  355. }
  356. }
  357. static float zfeq(float val0, float val1, float eps = 0.0001) {
  358. float dv = val0 - val1;
  359. if (dv < 0) dv = -dv;
  360. if (dv < eps) return true;
  361. return false;
  362. }
  363. bool chip_calculate_prescaler_and_autoreload_by_expect_freq(uint32_t timerInClk, float infreqhz, uint32_t* prescaler, uint32_t* autoreload) {
  364. /**
  365. * @brief
  366. */
  367. ZEARLY_ASSERT(!zfeq(infreqhz, 0, 0.01));
  368. float psc_x_arr = timerInClk / infreqhz;
  369. uint32_t psc = 0;
  370. uint32_t arr = 65534;
  371. for (; arr > 2; arr--) {
  372. psc = psc_x_arr / arr;
  373. if (psc >= 1) {
  374. uint32_t tmparr = psc_x_arr / psc;
  375. if (tmparr >= 65534) continue;
  376. break;
  377. }
  378. }
  379. if (psc == 0) return false;
  380. if (arr <= 3) return false; // 定时器一周期的分辨率太小了
  381. arr = psc_x_arr / psc;
  382. int psc_x_arr_real = arr * psc;
  383. float realfreq = timerInClk / psc_x_arr_real;
  384. arr = arr - 1;
  385. psc = psc - 1;
  386. // uint16_t comparevalue = 50 / 100.0 * arr;
  387. *prescaler = psc;
  388. *autoreload = arr;
  389. return true;
  390. }