You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

409 lines
7.3 KiB

#include "chip_helper.hpp"
#include "cmsis_os.h"
#include "sdk\basic\logger.hpp"
extern "C" {
static uint8_t g_port_exit_critical_count;
void chip_critical_enter(void) { portENTER_CRITICAL(); }
void chip_critical_exit(void) { portEXIT_CRITICAL(); }
GPIO_TypeDef* chip_get_gpio(Pin_t pin) {
int port = pin >> 4;
switch (port) {
case (PA0 >> 4):
#ifdef GPIOA
return GPIOA;
#endif
break;
case (PB0 >> 4):
#ifdef GPIOB
return GPIOB;
#endif
break;
case (PC0 >> 4):
#ifdef GPIOC
return GPIOC;
#endif
break;
case (PD0 >> 4):
#ifdef GPIOD
return GPIOD;
#endif
break;
case (PE0 >> 4):
#ifdef GPIOE
return GPIOE;
#endif
break;
case (PF0 >> 4):
#ifdef GPIOF
return GPIOF;
#endif
break;
case (PG0 >> 4):
#ifdef GPIOG
return GPIOG;
#endif
break;
default:
break;
}
return NULL;
}
uint16_t chip_get_pinoff(Pin_t pin) {
uint16_t pinoff = pin & 0x0F;
switch (pinoff) {
case 0:
return GPIO_PIN_0;
case 1:
return GPIO_PIN_1;
case 2:
return GPIO_PIN_2;
case 3:
return GPIO_PIN_3;
case 4:
return GPIO_PIN_4;
case 5:
return GPIO_PIN_5;
case 6:
return GPIO_PIN_6;
case 7:
return GPIO_PIN_7;
case 8:
return GPIO_PIN_8;
case 9:
return GPIO_PIN_9;
case 10:
return GPIO_PIN_10;
case 11:
return GPIO_PIN_11;
case 12:
return GPIO_PIN_12;
case 13:
return GPIO_PIN_13;
case 14:
return GPIO_PIN_14;
case 15:
return GPIO_PIN_15;
default:
break;
};
return 0;
}
// TIM2
// TIM3
// TIM4
// TIM5
// TIM6
// TIM7
// TIM12
// TIM13
// TIM14
// TIM1
// TIM8
// TIM9
// TIM10
// TIM11
// TIM_CR1_CEN_Pos
const char* chip_tim_get_name(TIM_TypeDef* tim) {
#ifdef TIM1
if (tim == TIM1) {
return "TIM1";
}
#endif
#ifdef TIM2
if (tim == TIM2) {
return "TIM2";
}
#endif
#ifdef TIM3
if (tim == TIM3) {
return "TIM3";
}
#endif
#ifdef TIM4
if (tim == TIM4) {
return "TIM4";
}
#endif
#ifdef TIM5
if (tim == TIM5) {
return "TIM5";
}
#endif
#ifdef TIM6
if (tim == TIM6) {
return "TIM6";
}
#endif
#ifdef TIM7
if (tim == TIM7) {
return "TIM7";
}
#endif
#ifdef TIM8
if (tim == TIM8) {
return "TIM8";
}
#endif
#ifdef TIM9
if (tim == TIM9) {
return "TIM9";
}
#endif
#ifdef TIM10
if (tim == TIM10) {
return "TIM10";
}
#endif
#ifdef TIM11
if (tim == TIM11) {
return "TIM11";
}
#endif
#ifdef TIM12
if (tim == TIM12) {
return "TIM12";
}
#endif
#ifdef TIM13
if (tim == TIM13) {
return "TIM13";
}
#endif
#ifdef TIM14
if (tim == TIM14) {
return "TIM14";
}
#endif
return "unknowntim";
}
const char* chip_gpio_group_get_name(GPIO_TypeDef* gpio_group) {
if (gpio_group == GPIOA) {
return "GPIOA";
}
if (gpio_group == GPIOB) {
return "GPIOB";
}
if (gpio_group == GPIOC) {
return "GPIOC";
}
if (gpio_group == GPIOD) {
return "GPIOD";
}
if (gpio_group == GPIOE) {
return "GPIOE";
}
if (gpio_group == GPIOF) {
return "GPIOF";
}
if (gpio_group == GPIOG) {
return "GPIOG";
}
return "unknown gpio group";
}
const char* chip_pinoff_get_name(uint16_t pinoff) {
if (pinoff == GPIO_PIN_0) {
return "0";
}
if (pinoff == GPIO_PIN_1) {
return "1";
}
if (pinoff == GPIO_PIN_2) {
return "2";
}
if (pinoff == GPIO_PIN_3) {
return "3";
}
if (pinoff == GPIO_PIN_4) {
return "4";
}
if (pinoff == GPIO_PIN_5) {
return "5";
}
if (pinoff == GPIO_PIN_6) {
return "6";
}
if (pinoff == GPIO_PIN_7) {
return "7";
}
if (pinoff == GPIO_PIN_8) {
return "8";
}
if (pinoff == GPIO_PIN_9) {
return "9";
}
if (pinoff == GPIO_PIN_10) {
return "10";
}
if (pinoff == GPIO_PIN_11) {
return "11";
}
if (pinoff == GPIO_PIN_12) {
return "12";
}
if (pinoff == GPIO_PIN_13) {
return "13";
}
if (pinoff == GPIO_PIN_14) {
return "14";
}
if (pinoff == GPIO_PIN_15) {
return "15";
}
return "unknown pinoff";
}
// // no tim1
// TIM2_IRQn
// TIM3_IRQn
// TIM4_IRQn
// TIM5_IRQn
// TIM6_DAC_IRQn
// TIM7_IRQn
// //no tim8
// TIM1_BRK_TIM9_IRQn
// TIM1_UP_TIM10_IRQn
// TIM1_TRG_COM_TIM11_IRQn
// TIM8_BRK_TIM12_IRQn
// TIM8_UP_TIM13_IRQn
// TIM8_TRG_COM_TIM14_IRQn
IRQn_Type chip_tim_get_irq(TIM_HandleTypeDef* tim) {
if (tim->Instance == TIM1) {
EARLY_ASSERT(false);
}
if (tim->Instance == TIM2) {
return TIM2_IRQn;
}
if (tim->Instance == TIM3) {
return TIM3_IRQn;
}
if (tim->Instance == TIM4) {
return TIM4_IRQn;
}
if (tim->Instance == TIM5) {
return TIM5_IRQn;
}
if (tim->Instance == TIM6) {
return TIM6_DAC_IRQn;
}
if (tim->Instance == TIM7) {
return TIM7_IRQn;
}
if (tim->Instance == TIM8) {
EARLY_ASSERT(false);
}
if (tim->Instance == TIM9) {
return TIM1_BRK_TIM9_IRQn;
}
if (tim->Instance == TIM10) {
return TIM1_UP_TIM10_IRQn;
}
if (tim->Instance == TIM11) {
return TIM1_TRG_COM_TIM11_IRQn;
}
if (tim->Instance == TIM12) {
return TIM8_BRK_TIM12_IRQn;
}
if (tim->Instance == TIM13) {
return TIM8_UP_TIM13_IRQn;
}
if (tim->Instance == TIM14) {
return TIM8_TRG_COM_TIM14_IRQn;
}
//
EARLY_ASSERT(false);
return (IRQn_Type)0;
}
uint32_t chip_get_timer_clock_sorce_freq(TIM_HandleTypeDef* tim) {
uint32_t timClkFreq = 0;
#if 0
uint32_t pclk1Freq = HAL_RCC_GetPCLK1Freq();
uint32_t pclk2Freq = HAL_RCC_GetPCLK2Freq();
uint32_t sysClkFreq = HAL_RCC_GetSysClockFreq();
#endif
uint32_t pFLatency;
RCC_ClkInitTypeDef clkconfig;
HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
bool isAPB2 = false;
#ifdef TIM1
if (tim->Instance == TIM1) isAPB2 = true;
#endif
#ifdef TIM8
if (tim->Instance == TIM8) isAPB2 = true;
#endif
#ifdef TIM9
if (tim->Instance == TIM9) isAPB2 = true;
#endif
#ifdef TIM10
if (tim->Instance == TIM10) isAPB2 = true;
#endif
#ifdef TIM11
if (tim->Instance == TIM11) isAPB2 = true;
#endif
if (isAPB2) {
if (clkconfig.APB2CLKDivider == RCC_HCLK_DIV1) {
timClkFreq = HAL_RCC_GetPCLK2Freq();
} else {
timClkFreq = 2 * HAL_RCC_GetPCLK2Freq();
}
} else {
if (clkconfig.APB1CLKDivider == RCC_HCLK_DIV1) {
timClkFreq = HAL_RCC_GetPCLK1Freq();
} else {
timClkFreq = 2 * HAL_RCC_GetPCLK1Freq();
}
}
return timClkFreq;
}
}
static float zfeq(float val0, float val1, float eps = 0.0001) {
float dv = val0 - val1;
if (dv < 0) dv = -dv;
if (dv < eps) return true;
return false;
}
bool chip_calculate_prescaler_and_autoreload_by_expect_freq(uint32_t timerInClk, float infreqhz, uint32_t* prescaler, uint32_t* autoreload) {
/**
* @brief 计算寄存器数值
*/
ZEARLY_ASSERT(!zfeq(infreqhz, 0, 0.01));
float psc_x_arr = timerInClk / infreqhz;
uint32_t psc = 0;
uint32_t arr = 65534;
for (; arr > 2; arr--) {
psc = psc_x_arr / arr;
if (psc >= 1) {
uint32_t tmparr = psc_x_arr / psc;
if (tmparr >= 65534) continue;
break;
}
}
if (psc == 0) return false;
if (arr <= 3) return false; // 定时器一周期的分辨率太小了
arr = psc_x_arr / psc;
int psc_x_arr_real = arr * psc;
float realfreq = timerInClk / psc_x_arr_real;
arr = arr - 1;
psc = psc - 1;
// uint16_t comparevalue = 50 / 100.0 * arr;
*prescaler = psc;
*autoreload = arr;
return true;
}