|
|
#include "a8k_opt_algo.hpp"
#include <stdarg.h>
#ifdef BUILD_IN_QT
void zos_log(const char* fmt, ...);
#define ZLOGI(fmt, ...) zos_log("INFO " fmt "\n", ##__VA_ARGS__);
#define ZLOGD(fmt, ...) zos_log("DEBU " fmt "\n", ##__VA_ARGS__);
#define ZLOGE(fmt, ...) zos_log("ERRO " fmt "\n", ##__VA_ARGS__);
#define ZLOGW(fmt, ...) zos_log("WARN " fmt "\n", ##__VA_ARGS__);
#else
#define ZLOGI(fmt, ...) ;
#define ZLOGD(fmt, ...) ;
#define ZLOGE(fmt, ...) ;
#define ZLOGW(fmt, ...) ;
#endif
namespace a8k_opt_algo { using namespace std;
typedef enum { ktopt, kfopt, } opt_type_t;
static void algo_assert(bool condition, const char* msg) { if (!condition) { ZLOGE("algo_assert:%s\n", msg); throw std::runtime_error(msg); } } bool feq(float a, float b, float epsilon) { float dv = a - b; if (dv < 0) dv = -dv; return dv <= epsilon; }
opt_type_t m_opttype; PorcessContext m_cxt;
static vector<float> sub_sampling(vector<float>& inputRaw, int nSubSampleRate); vector<float> super_sampling(vector<float>& inputRaw, int32_t nInputLength, int32_t nUpSampleRate);
static vector<float> sub_sampling(vector<float>& inputRaw, int nSubSampleRate) { int nSum = 0; float fAvg = 0; int subIndex = 0; int nOutputLength = inputRaw.size() / nSubSampleRate;
vector<float> subSampledRaw(nOutputLength, 0);
for (int index = 0; index < inputRaw.size(); index++) { if (index % nSubSampleRate == 0 && index > 0) { fAvg = nSum / nSubSampleRate; if (subIndex < subSampledRaw.size()) { subSampledRaw[subIndex++] = fAvg; } else { int empty = 0; } nSum = 0; } nSum += inputRaw[index]; } subSampledRaw[subSampledRaw.size() - 1] = subSampledRaw[subSampledRaw.size() - 2]; return subSampledRaw; }
vector<float> super_sampling(vector<float>& inputRaw, int32_t nInputLength, int32_t nUpSampleRate) { /**
* @brief * */ int nOutputLength = nInputLength * nUpSampleRate; vector<float> upSamplingRaw(nOutputLength, 0);
for (int si = 0, di = 0; si < nInputLength - 1; di++) { float a = upSamplingRaw[di * nUpSampleRate] = (float)inputRaw[si]; float b = upSamplingRaw[(di + 1) * nUpSampleRate] = (float)inputRaw[++si];
float nSlope = (b - a) / nUpSampleRate;
for (int i = 0; i < nUpSampleRate - 1; i++) { int baseIndex = (di * nUpSampleRate) + i; upSamplingRaw[baseIndex + 1] = upSamplingRaw[baseIndex] + nSlope; } }
return upSamplingRaw; }
vector<float> getwindowspoint(vector<float>& src, int off, int windows) { vector<float> ret(windows, 0); int retindex = 0; for (int i = off - windows / 2; i <= off + windows / 2; i++) { ret[retindex] = src[i]; retindex++; } return ret; }
void linear_least_squares(vector<float>& x, vector<float>& y, float& slope, float& intercept) { size_t n = x.size(); double sumX = 0.0, sumY = 0.0, sumXY = 0.0, sumXX = 0.0; for (size_t i = 0; i < n; ++i) { sumX += x[i]; sumY += y[i]; sumXY += x[i] * y[i]; sumXX += x[i] * x[i]; } double xMean = sumX / n; double yMean = sumY / n;
algo_assert(!feq((sumXX - n * xMean * xMean), 0, 0.0001), "sumXX - n * xMean * xMean == 0"); slope = (sumXY - n * xMean * yMean) / (sumXX - n * xMean * xMean); intercept = yMean - slope * xMean; return; }
void linear_least_squares(float* y, int size, float& slope, float& intercept) { vector<float> xpoint(size, 0); vector<float> ypoint(size, 0);
for (size_t i = 0; i < size; i++) { xpoint[i] = i; ypoint[i] = y[i]; } return linear_least_squares(xpoint, ypoint, slope, intercept); }
void linear_least_squares_muti_windos(float* y, int size, vector<int> startx, int windowssize, float& slope, float& intercept) { vector<float> xpoint; vector<float> ypoint;
// ZLOGI(TAG, "xxxxx%d", startx.size());
for (size_t i = 0; i < startx.size(); i++) { int xstart = startx[i];
for (size_t xindex = xstart; xindex < (xstart + windowssize); xindex++) { // ZLOGI(TAG, "xindex:%d y:%f", xindex, y[xindex]);
xpoint.push_back(xindex); ypoint.push_back(y[xindex]); } } return linear_least_squares(xpoint, ypoint, slope, intercept); }
vector<float> least_square_method_differentiate(vector<float>& inputRaw, int windows_size) { algo_assert(windows_size > 0, "windows_size <= 0"); algo_assert(windows_size % 2 == 1, "windows_size is not odd");
vector<float> differentiateRaw(inputRaw.size(), 0); vector<float> windowsRaw(windows_size, 0); int windows_size_half = (windows_size - 1) / 2;
for (int index = windows_size_half; index < inputRaw.size() - windows_size_half; index++) { windowsRaw = getwindowspoint(inputRaw, index, windows_size); float intercept = 0; linear_least_squares(windowsRaw.data(), windows_size, differentiateRaw[index], intercept); }
for (size_t i = 0; i < windows_size_half; i++) { differentiateRaw[i] = differentiateRaw[windows_size_half]; }
for (size_t i = inputRaw.size() - windows_size_half; i < inputRaw.size(); i++) { differentiateRaw[i] = differentiateRaw[inputRaw.size() - windows_size_half - 1]; } return differentiateRaw; } vector<float> smooth_windows(vector<float>& inputRaw, int windows_size) { vector<float> smoothRaw(inputRaw.size(), 0); int windows_size_half = (windows_size - 1) / 2;
for (int index = windows_size_half; index < inputRaw.size() - windows_size_half; index++) { float sum = 0; for (int i = index - windows_size_half; i <= index + windows_size_half; i++) { sum += inputRaw[i]; } smoothRaw[index] = sum / windows_size; }
for (size_t i = 0; i < windows_size_half; i++) { smoothRaw[i] = smoothRaw[windows_size_half]; }
for (size_t i = inputRaw.size() - windows_size_half; i < inputRaw.size(); i++) { smoothRaw[i] = smoothRaw[inputRaw.size() - windows_size_half - 1]; }
return smoothRaw; }
float find_avg_line(vector<float>& inputRaw) { float base_min = 500; float fsum = 0; int cnt = 0;
int range = inputRaw.size();
do { fsum = cnt = 0; for (int i = 1; i < range; i++) { if (inputRaw[i] < base_min) { fsum += inputRaw[i]; cnt++; } }
base_min = base_min + 50; } while (cnt < range - 15 * inputRaw.size() / 250);
float fbase = fsum / cnt; return fbase; }
/***********************************************************************************************************************
* ALGO_IMPL * ***********************************************************************************************************************/
int32_t findPeakStartTurnPoint(vector<float>& data, int32_t search_start, int32_t suggest_search_end) { // int32_t search_end = 0;
// for (int32_t i = search_start; i < suggest_search_end; i++) {
// if (data[i] > m_cxt.agvline) {
// search_end = i;
// }
// }
int32_t search_end = suggest_search_end; int32_t peakTurnPos = search_start; float maxdiff2 = m_cxt.diffX2[search_start]; for (int32_t i = search_start; i < search_end; i++) { if (m_cxt.diffX2[i] > maxdiff2) { maxdiff2 = m_cxt.diffX2[i]; peakTurnPos = i; } } return peakTurnPos; }
int32_t findPeakEndTurnPoint(vector<float>& data, int32_t search_start, int32_t suggest_search_end) { int32_t search_end = suggest_search_end; int32_t peakTurnPos = search_start; float maxdiff2 = m_cxt.diffX2[search_start]; for (int32_t i = search_start; i < search_end; i++) { if (m_cxt.diffX2[i] > maxdiff2) { maxdiff2 = m_cxt.diffX2[i]; peakTurnPos = i; } } return peakTurnPos; }
float computePeakArea(vector<float>& data, int32_t start, int32_t end) { float area = 0; for (int i = start; i < end; i++) { area += data[i]; }
float baselinearea = 0; baselinearea = (data[start] + data[end]) * abs(end - start) / 2;
return abs(area - baselinearea); }
void findpeak(vector<float>& data, int32_t search_start, int32_t search_end, PeakInfo& retpeak) { // find peak
ZLOGI("find peak in [%d %d]", search_start, search_end); retpeak.find_peak = false; retpeak.area = 0; retpeak.peak_pos = 0; retpeak.peak_start_pos = 0; retpeak.peak_end_pos = 0;
float max = 0; int peakpos = 0; float midpos = search_start + (search_end - search_start) / 2; for (int i = search_start; i < search_end; i++) { if (data[i] > max) { max = data[i]; peakpos = i; } }
if (max < m_cxt.agvline) { ZLOGI("invalid peak:%f, max < m_cxt.agvline:%f", max, m_cxt.agvline); retpeak.find_peak = false; return; } else if (peakpos > midpos + 15) { ZLOGI("invalid peak:%d, peakpos > midpos + 15:%d", peakpos, midpos + 15); retpeak.find_peak = false; return; } else if (peakpos < midpos - 15) { ZLOGI("invalid peak:%d, peakpos < midpos - 15:%d", peakpos, midpos - 15); retpeak.find_peak = false; return; }
retpeak.peak_pos = peakpos; retpeak.peak_start_pos = findPeakStartTurnPoint(data, peakpos - 20, peakpos) - 4; retpeak.peak_end_pos = findPeakEndTurnPoint(data, peakpos, peakpos + 20) + 4; retpeak.area = computePeakArea(data, retpeak.peak_start_pos, retpeak.peak_end_pos); retpeak.find_peak = true;
}
void a8k_opt_algo_process(vector<float>& ogigin_val, OptAlgoResult& result) { //
vector<float> super = super_sampling(ogigin_val, ogigin_val.size(), 5); vector<float> subsample = sub_sampling(super, 24); ZLOGI("subsample size:%d", subsample.size());
result.input = ogigin_val; m_cxt.raw = subsample; m_cxt.avg = subsample; m_cxt.diff = least_square_method_differentiate(m_cxt.avg, 5); m_cxt.diffX2 = least_square_method_differentiate(m_cxt.diff, 5); m_cxt.agvline = find_avg_line(subsample); result.displayData = m_cxt.avg;
// findPeak
for (size_t i = 0; i < 5; i++) { findpeak(m_cxt.avg, 20, 60, result.pin040); findpeak(m_cxt.avg, 60, 100, result.pin080); findpeak(m_cxt.avg, 100, 140, result.pin120); findpeak(m_cxt.avg, 140, 180, result.pin160); findpeak(m_cxt.avg, 180, 220, result.pin200); } }
ecode_t A8kOptAlgoProcess(vector<float> ogigin_val, OptAlgoResult& result) { //
if (ogigin_val.size() != 1200) { return kOptErr_pointNumError; } a8k_opt_algo_process(ogigin_val, result); return kOptErr_suc; }
void A8kOptAlgoGetProcessContext(PorcessContext& context) { context = m_cxt; }
/***********************************************************************************************************************
* T_A8kOptAlgoPreProcess * ***********************************************************************************************************************/ int32_t t_detector_gain_to_raw_gain(float scan_gain) { // opamp_gain = (((100.0 * (float) scan_gain_raw) / 255) + 2.4) / 4.7;
int32_t scan_gain_raw = 0; scan_gain_raw = (scan_gain * 4.7 - 2.4) * 256. / 100. + 0.5; if (scan_gain_raw < 1) scan_gain_raw = 1; if (scan_gain_raw > 255) scan_gain_raw = 255; return scan_gain_raw; } float t_detector_raw_gain_to_gain(int32_t gain) { float scan_gain = 0; scan_gain = (((100.0 * (float)gain) / 256) + 2.4) / 4.7; return scan_gain; }
ecode_t T_A8kOptAlgoPreProcess(vector<float> ogigin_val, int32_t now_scan_gain, int32_t expectResultRangeStart, int32_t expectResultRangeEnd, OptAlgoPreProcessResult& result) { if (ogigin_val.size() != 1200) { return kOptErr_pointNumError; }
int32_t adcgoal = expectResultRangeEnd; int32_t maxadc = ogigin_val[0];
result.scanAgain = false; result.suggestScanGain = now_scan_gain;
for (int32_t i = 1; i < ogigin_val.size(); i++) { if (maxadc < ogigin_val[i]) { maxadc = ogigin_val[i]; } }
if (maxadc > expectResultRangeStart) { result.scanAgain = false; return kOptErr_suc; }
float nowgain = t_detector_raw_gain_to_gain(now_scan_gain); float gain_adjust = 0; if (maxadc != 0) { gain_adjust = nowgain * ((float)adcgoal / (float)maxadc); } else { gain_adjust = nowgain; } result.suggestScanGain = t_detector_gain_to_raw_gain(gain_adjust); result.scanAgain = true; return kOptErr_suc; }
/***********************************************************************************************************************
* F_A8kOptAlgoPreProcess * ***********************************************************************************************************************/ float f_detector_raw_gain_to_gain(int32_t gain) { float scan_gain = 0; scan_gain = (((100. / 256.) * (float)gain) + 0.125) / 2.15 + 1.; return scan_gain; } int32_t f_detector_gain_to_raw_gain(float scan_gain) { // int32_t scan_gain = (((100. / 256.) * (float)scan_gain_raw) + 0.125) / 2.15 + 1.;
int32_t scan_gain_raw = 0; scan_gain_raw = ((scan_gain - 1.0) * 2.15 - 0.125) * 255. / 100. + 0.5; if (scan_gain_raw < 1) scan_gain_raw = 1; if (scan_gain_raw > 255) scan_gain_raw = 255; return scan_gain_raw; } ecode_t F_A8kOptAlgoPreProcess(vector<float> ogigin_val, int32_t now_scan_gain, int32_t expectResultRangeStart, int32_t expectResultRangeEnd, OptAlgoPreProcessResult& result) { if (ogigin_val.size() != 1200) { return kOptErr_pointNumError; }
int32_t adcgoal = expectResultRangeEnd; int32_t maxadc = ogigin_val[0];
result.scanAgain = false; result.suggestScanGain = now_scan_gain;
for (int32_t i = 1; i < ogigin_val.size(); i++) { if (maxadc < ogigin_val[i]) { maxadc = ogigin_val[i]; } }
if (maxadc > expectResultRangeStart) { result.scanAgain = false; return kOptErr_suc; }
float nowgain = f_detector_raw_gain_to_gain(now_scan_gain); float gain_adjust = 0; if (maxadc != 0) { gain_adjust = nowgain * ((float)adcgoal / (float)maxadc); } else { gain_adjust = nowgain; } result.suggestScanGain = f_detector_gain_to_raw_gain(gain_adjust); result.scanAgain = true; return kOptErr_suc; }
} // namespace a8k_opt_algo
|