You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

456 lines
14 KiB

#include "a8k_opt_algo.hpp"
#include <stdarg.h>
#ifdef BUILD_IN_QT
void zos_log(const char* fmt, ...);
#define ZLOGI(fmt, ...) zos_log("INFO " fmt "\n", ##__VA_ARGS__);
#define ZLOGD(fmt, ...) zos_log("DEBU " fmt "\n", ##__VA_ARGS__);
#define ZLOGE(fmt, ...) zos_log("ERRO " fmt "\n", ##__VA_ARGS__);
#define ZLOGW(fmt, ...) zos_log("WARN " fmt "\n", ##__VA_ARGS__);
#else
#define ZLOGI(fmt, ...) ;
#define ZLOGD(fmt, ...) ;
#define ZLOGE(fmt, ...) ;
#define ZLOGW(fmt, ...) ;
#endif
namespace a8k_opt_algo {
using namespace std;
typedef enum {
ktopt,
kfopt,
} opt_type_t;
static void algo_assert(bool condition, const char* msg) {
if (!condition) {
ZLOGE("algo_assert:%s\n", msg);
throw std::runtime_error(msg);
}
}
bool feq(float a, float b, float epsilon) {
float dv = a - b;
if (dv < 0) dv = -dv;
return dv <= epsilon;
}
opt_type_t m_opttype;
PorcessContext m_cxt;
static vector<float> sub_sampling(vector<float>& inputRaw, int nSubSampleRate);
vector<float> super_sampling(vector<float>& inputRaw, int32_t nInputLength, int32_t nUpSampleRate);
static vector<float> sub_sampling(vector<float>& inputRaw, int nSubSampleRate) {
int nSum = 0;
float fAvg = 0;
int subIndex = 0;
int nOutputLength = inputRaw.size() / nSubSampleRate;
vector<float> subSampledRaw(nOutputLength, 0);
for (int index = 0; index < inputRaw.size(); index++) {
if (index % nSubSampleRate == 0 && index > 0) {
fAvg = nSum / nSubSampleRate;
if (subIndex < subSampledRaw.size()) {
subSampledRaw[subIndex++] = fAvg;
} else {
int empty = 0;
}
nSum = 0;
}
nSum += inputRaw[index];
}
subSampledRaw[subSampledRaw.size() - 1] = subSampledRaw[subSampledRaw.size() - 2];
return subSampledRaw;
}
vector<float> super_sampling(vector<float>& inputRaw, int32_t nInputLength, int32_t nUpSampleRate) {
/**
* @brief
*
*/
int nOutputLength = nInputLength * nUpSampleRate;
vector<float> upSamplingRaw(nOutputLength, 0);
for (int si = 0, di = 0; si < nInputLength - 1; di++) {
float a = upSamplingRaw[di * nUpSampleRate] = (float)inputRaw[si];
float b = upSamplingRaw[(di + 1) * nUpSampleRate] = (float)inputRaw[++si];
float nSlope = (b - a) / nUpSampleRate;
for (int i = 0; i < nUpSampleRate - 1; i++) {
int baseIndex = (di * nUpSampleRate) + i;
upSamplingRaw[baseIndex + 1] = upSamplingRaw[baseIndex] + nSlope;
}
}
return upSamplingRaw;
}
vector<float> getwindowspoint(vector<float>& src, int off, int windows) {
vector<float> ret(windows, 0);
int retindex = 0;
for (int i = off - windows / 2; i <= off + windows / 2; i++) {
ret[retindex] = src[i];
retindex++;
}
return ret;
}
/**
* @brief 最小二乘法求解曲线斜率
*
* @param val Y轴数据
* @param size Y轴数据长度
* @return float 斜率
*/
void linear_least_squares(vector<float>& x, vector<float>& y, float& slope, float& intercept) {
size_t n = x.size();
double sumX = 0.0, sumY = 0.0, sumXY = 0.0, sumXX = 0.0;
for (size_t i = 0; i < n; ++i) {
sumX += x[i];
sumY += y[i];
sumXY += x[i] * y[i];
sumXX += x[i] * x[i];
}
double xMean = sumX / n;
double yMean = sumY / n;
algo_assert(!feq((sumXX - n * xMean * xMean), 0, 0.0001), "sumXX - n * xMean * xMean == 0");
slope = (sumXY - n * xMean * yMean) / (sumXX - n * xMean * xMean);
intercept = yMean - slope * xMean;
return;
}
void linear_least_squares(float* y, int size, float& slope, float& intercept) {
vector<float> xpoint(size, 0);
vector<float> ypoint(size, 0);
for (size_t i = 0; i < size; i++) {
xpoint[i] = i;
ypoint[i] = y[i];
}
return linear_least_squares(xpoint, ypoint, slope, intercept);
}
void linear_least_squares_muti_windos(float* y, int size, vector<int> startx, int windowssize, float& slope, float& intercept) {
vector<float> xpoint;
vector<float> ypoint;
// ZLOGI(TAG, "xxxxx%d", startx.size());
for (size_t i = 0; i < startx.size(); i++) {
int xstart = startx[i];
for (size_t xindex = xstart; xindex < (xstart + windowssize); xindex++) {
// ZLOGI(TAG, "xindex:%d y:%f", xindex, y[xindex]);
xpoint.push_back(xindex);
ypoint.push_back(y[xindex]);
}
}
return linear_least_squares(xpoint, ypoint, slope, intercept);
}
vector<float> least_square_method_differentiate(vector<float>& inputRaw, int windows_size) {
algo_assert(windows_size > 0, "windows_size <= 0");
algo_assert(windows_size % 2 == 1, "windows_size is not odd");
vector<float> differentiateRaw(inputRaw.size(), 0);
vector<float> windowsRaw(windows_size, 0);
int windows_size_half = (windows_size - 1) / 2;
for (int index = windows_size_half; index < inputRaw.size() - windows_size_half; index++) {
windowsRaw = getwindowspoint(inputRaw, index, windows_size);
float intercept = 0;
linear_least_squares(windowsRaw.data(), windows_size, differentiateRaw[index], intercept);
}
for (size_t i = 0; i < windows_size_half; i++) {
differentiateRaw[i] = differentiateRaw[windows_size_half];
}
for (size_t i = inputRaw.size() - windows_size_half; i < inputRaw.size(); i++) {
differentiateRaw[i] = differentiateRaw[inputRaw.size() - windows_size_half - 1];
}
return differentiateRaw;
}
vector<float> smooth_windows(vector<float>& inputRaw, int windows_size) {
vector<float> smoothRaw(inputRaw.size(), 0);
int windows_size_half = (windows_size - 1) / 2;
for (int index = windows_size_half; index < inputRaw.size() - windows_size_half; index++) {
float sum = 0;
for (int i = index - windows_size_half; i <= index + windows_size_half; i++) {
sum += inputRaw[i];
}
smoothRaw[index] = sum / windows_size;
}
for (size_t i = 0; i < windows_size_half; i++) {
smoothRaw[i] = smoothRaw[windows_size_half];
}
for (size_t i = inputRaw.size() - windows_size_half; i < inputRaw.size(); i++) {
smoothRaw[i] = smoothRaw[inputRaw.size() - windows_size_half - 1];
}
return smoothRaw;
}
float find_avg_line(vector<float>& inputRaw) {
float base_min = 500;
float fsum = 0;
int cnt = 0;
int range = inputRaw.size();
do {
fsum = cnt = 0;
for (int i = 1; i < range; i++) {
if (inputRaw[i] < base_min) {
fsum += inputRaw[i];
cnt++;
}
}
base_min = base_min + 50;
} while (cnt < range - 15 * inputRaw.size() / 250);
float fbase = fsum / cnt;
return fbase;
}
/***********************************************************************************************************************
* ALGO_IMPL *
***********************************************************************************************************************/
int32_t findPeakStartTurnPoint(vector<float>& data, int32_t search_start, int32_t suggest_search_end) {
// int32_t search_end = 0;
// for (int32_t i = search_start; i < suggest_search_end; i++) {
// if (data[i] > m_cxt.agvline) {
// search_end = i;
// }
// }
int32_t search_end = suggest_search_end;
int32_t peakTurnPos = search_start;
float maxdiff2 = m_cxt.diffX2[search_start];
for (int32_t i = search_start; i < search_end; i++) {
if (m_cxt.diffX2[i] > maxdiff2) {
maxdiff2 = m_cxt.diffX2[i];
peakTurnPos = i;
}
}
return peakTurnPos;
}
int32_t findPeakEndTurnPoint(vector<float>& data, int32_t search_start, int32_t suggest_search_end) {
int32_t search_end = suggest_search_end;
int32_t peakTurnPos = search_start;
float maxdiff2 = m_cxt.diffX2[search_start];
for (int32_t i = search_start; i < search_end; i++) {
if (m_cxt.diffX2[i] > maxdiff2) {
maxdiff2 = m_cxt.diffX2[i];
peakTurnPos = i;
}
}
return peakTurnPos;
}
float computePeakArea(vector<float>& data, int32_t start, int32_t end) {
float area = 0;
for (int i = start; i < end; i++) {
area += data[i];
}
float baselinearea = 0;
baselinearea = (data[start] + data[end]) * abs(end - start) / 2;
return abs(area - baselinearea);
}
void findpeak(vector<float>& data, int32_t search_start, int32_t search_end, PeakInfo& retpeak) {
// find peak
ZLOGI("find peak in [%d %d]", search_start, search_end);
retpeak.find_peak = false;
retpeak.area = 0;
retpeak.peak_pos = 0;
retpeak.peak_start_pos = 0;
retpeak.peak_end_pos = 0;
float max = 0;
int peakpos = 0;
float midpos = search_start + (search_end - search_start) / 2;
for (int i = search_start; i < search_end; i++) {
if (data[i] > max) {
max = data[i];
peakpos = i;
}
}
if (max < m_cxt.agvline) {
ZLOGI("invalid peak:%f, max < m_cxt.agvline:%f", max, m_cxt.agvline);
retpeak.find_peak = false;
return;
} else if (peakpos > midpos + 15) {
ZLOGI("invalid peak:%d, peakpos > midpos + 15:%d", peakpos, midpos + 15);
retpeak.find_peak = false;
return;
} else if (peakpos < midpos - 15) {
ZLOGI("invalid peak:%d, peakpos < midpos - 15:%d", peakpos, midpos - 15);
retpeak.find_peak = false;
return;
}
// find_peak_start
// 从pos向前找20个点,从低于均值线的坐标开始找,找到diff2的最大值
retpeak.peak_pos = peakpos;
retpeak.peak_start_pos = findPeakStartTurnPoint(data, peakpos - 20, peakpos) - 4; //-4 是经验数值
retpeak.peak_end_pos = findPeakEndTurnPoint(data, peakpos, peakpos + 20) + 4; //+4 是经验数值
retpeak.area = computePeakArea(data, retpeak.peak_start_pos, retpeak.peak_end_pos);
retpeak.find_peak = true;
// find_peak_end
// 从pos向后找20个点,找到diff2的最大值
}
void a8k_opt_algo_process(vector<float>& ogigin_val, OptAlgoResult& result) {
//
vector<float> super = super_sampling(ogigin_val, ogigin_val.size(), 5);
vector<float> subsample = sub_sampling(super, 24);
ZLOGI("subsample size:%d", subsample.size());
result.input = ogigin_val;
m_cxt.raw = subsample;
m_cxt.avg = subsample;
m_cxt.diff = least_square_method_differentiate(m_cxt.avg, 5); // 最小二乘法求曲线斜率集合
m_cxt.diffX2 = least_square_method_differentiate(m_cxt.diff, 5); // 最小二乘法求曲线二次斜率集合
m_cxt.agvline = find_avg_line(subsample);
result.displayData = m_cxt.avg;
// findPeak
for (size_t i = 0; i < 5; i++) {
findpeak(m_cxt.avg, 20, 60, result.pin040);
findpeak(m_cxt.avg, 60, 100, result.pin080);
findpeak(m_cxt.avg, 100, 140, result.pin120);
findpeak(m_cxt.avg, 140, 180, result.pin160);
findpeak(m_cxt.avg, 180, 220, result.pin200);
}
}
ecode_t A8kOptAlgoProcess(vector<float> ogigin_val, OptAlgoResult& result) { //
if (ogigin_val.size() != 1200) {
return kOptErr_pointNumError;
}
a8k_opt_algo_process(ogigin_val, result);
return kOptErr_suc;
}
void A8kOptAlgoGetProcessContext(PorcessContext& context) { context = m_cxt; }
/***********************************************************************************************************************
* T_A8kOptAlgoPreProcess *
***********************************************************************************************************************/
int32_t t_detector_gain_to_raw_gain(float scan_gain) {
// opamp_gain = (((100.0 * (float) scan_gain_raw) / 255) + 2.4) / 4.7;
int32_t scan_gain_raw = 0;
scan_gain_raw = (scan_gain * 4.7 - 2.4) * 256. / 100. + 0.5;
if (scan_gain_raw < 1) scan_gain_raw = 1;
if (scan_gain_raw > 255) scan_gain_raw = 255;
return scan_gain_raw;
}
float t_detector_raw_gain_to_gain(int32_t gain) {
float scan_gain = 0;
scan_gain = (((100.0 * (float)gain) / 256) + 2.4) / 4.7;
return scan_gain;
}
ecode_t T_A8kOptAlgoPreProcess(vector<float> ogigin_val, int32_t now_scan_gain, int32_t expectResultRangeStart, int32_t expectResultRangeEnd, OptAlgoPreProcessResult& result) {
if (ogigin_val.size() != 1200) {
return kOptErr_pointNumError;
}
int32_t adcgoal = expectResultRangeEnd;
int32_t maxadc = ogigin_val[0];
result.scanAgain = false;
result.suggestScanGain = now_scan_gain;
for (int32_t i = 1; i < ogigin_val.size(); i++) {
if (maxadc < ogigin_val[i]) {
maxadc = ogigin_val[i];
}
}
if (maxadc > expectResultRangeStart) {
result.scanAgain = false;
return kOptErr_suc;
}
float nowgain = t_detector_raw_gain_to_gain(now_scan_gain);
float gain_adjust = 0;
if (maxadc != 0) {
gain_adjust = nowgain * ((float)adcgoal / (float)maxadc);
} else {
gain_adjust = nowgain;
}
result.suggestScanGain = t_detector_gain_to_raw_gain(gain_adjust);
result.scanAgain = true;
return kOptErr_suc;
}
/***********************************************************************************************************************
* F_A8kOptAlgoPreProcess *
***********************************************************************************************************************/
float f_detector_raw_gain_to_gain(int32_t gain) {
float scan_gain = 0;
scan_gain = (((100. / 256.) * (float)gain) + 0.125) / 2.15 + 1.;
return scan_gain;
}
int32_t f_detector_gain_to_raw_gain(float scan_gain) {
// int32_t scan_gain = (((100. / 256.) * (float)scan_gain_raw) + 0.125) / 2.15 + 1.;
int32_t scan_gain_raw = 0;
scan_gain_raw = ((scan_gain - 1.0) * 2.15 - 0.125) * 255. / 100. + 0.5;
if (scan_gain_raw < 1) scan_gain_raw = 1;
if (scan_gain_raw > 255) scan_gain_raw = 255;
return scan_gain_raw;
}
ecode_t F_A8kOptAlgoPreProcess(vector<float> ogigin_val, int32_t now_scan_gain, int32_t expectResultRangeStart, int32_t expectResultRangeEnd, OptAlgoPreProcessResult& result) {
if (ogigin_val.size() != 1200) {
return kOptErr_pointNumError;
}
int32_t adcgoal = expectResultRangeEnd;
int32_t maxadc = ogigin_val[0];
result.scanAgain = false;
result.suggestScanGain = now_scan_gain;
for (int32_t i = 1; i < ogigin_val.size(); i++) {
if (maxadc < ogigin_val[i]) {
maxadc = ogigin_val[i];
}
}
if (maxadc > expectResultRangeStart) {
result.scanAgain = false;
return kOptErr_suc;
}
float nowgain = f_detector_raw_gain_to_gain(now_scan_gain);
float gain_adjust = 0;
if (maxadc != 0) {
gain_adjust = nowgain * ((float)adcgoal / (float)maxadc);
} else {
gain_adjust = nowgain;
}
result.suggestScanGain = f_detector_gain_to_raw_gain(gain_adjust);
result.scanAgain = true;
return kOptErr_suc;
}
} // namespace a8k_opt_algo