Browse Source

decode-dimms: Decode size and timings of DDR4

Decode the memory module size and timings of DDR4 memory.
tags/v4.1
Jean Delvare 8 years ago
parent
commit
56149a6f84
  1. 1
      CHANGES
  2. 177
      eeprom/decode-dimms

1
CHANGES

@ -4,6 +4,7 @@ i2c-tools CHANGES
master
tools: Fix potential buffer overflows in i2cbusses
decode-dimms: Add preliminary DDR4 support
Decode size and timings of DDR4
4.0 (2017-10-30)
tools: Fix build with recent compilers (gcc 4.6+)

177
eeprom/decode-dimms

@ -1702,15 +1702,190 @@ sub decode_ddr3_sdram($)
}
# Parameter: EEPROM bytes 0-127 (using 1-1)
# Return combined time in ns
sub ddr4_mtb_ftb($$$$)
{
my ($byte1, $byte2, $mtb, $ftb) = @_;
# byte1 is unsigned in ps, but byte2 is signed in ps
$byte2 -= 0x100 if $byte2 & 0x80;
return ($byte1 * $mtb + $byte2 * $ftb) / 1000;
}
# Rounded per DDR4 specifications
sub ddr4_core_timings($$$$$)
{
my ($cas, $ctime, $trcd, $trp, $tras) = @_;
return $cas . "-" . ceil($trcd/$ctime - 0.025) .
"-" . ceil($trp/$ctime - 0.025) .
"-" . ceil($tras/$ctime - 0.025);
}
use constant DDR4_UNBUFFERED => 1;
use constant DDR4_REGISTERED => 2;
use constant DDR4_LOAD_REDUCED => 4;
# Parameter: EEPROM bytes 0-383 (using 1-125)
sub decode_ddr4_sdram($)
{
my $bytes = shift;
my ($ctime, $ctime_max);
my ($ftb, $mtb);
my $ii;
my @module_types = (
{ type => "Extended type", },
{ type => "RDIMM", family => DDR4_REGISTERED },
{ type => "UDIMM", family => DDR4_UNBUFFERED },
{ type => "SO-DIMM", family => DDR4_UNBUFFERED },
{ type => "LRDIMM", family => DDR4_LOAD_REDUCED },
{ type => "Mini-RDIMM", family => DDR4_REGISTERED },
{ type => "Mini-UDIMM", family => DDR4_UNBUFFERED },
{ type => "Reserved (0x07)", },
{ type => "72b-SO-RDIMM", family => DDR4_REGISTERED },
{ type => "72b-SO-UDIMM", family => DDR4_UNBUFFERED },
{ type => "Reserved (0x0A)", },
{ type => "Reserved (0x0B)", },
{ type => "16b-SO-DIMM", family => DDR4_UNBUFFERED },
{ type => "32b-SO-DIMM", family => DDR4_UNBUFFERED },
{ type => "Reserved (0x0E)", },
{ type => "No base memory", },
);
# SPD revision
printl_cond($bytes->[1] != 0xff, "SPD Revision",
($bytes->[1] >> 4) . "." . ($bytes->[1] & 0xf));
printl("Module Type", $module_types[$bytes->[3] & 0x0f]->{type});
# time bases
if (($bytes->[17] & 0x03) != 0x00 || ($bytes->[17] & 0xc0) != 0x00) {
print STDERR "Unknown time base values, can't decode\n";
return;
}
$ftb = 1; # ps
$mtb = 125; # ps
# speed
prints("Memory Characteristics");
$ctime = ddr4_mtb_ftb($bytes->[18], $bytes->[125], $mtb, $ftb);
$ctime_max = ddr4_mtb_ftb($bytes->[19], $bytes->[124], $mtb, $ftb);
my $ddrclk = 2 * (1000 / $ctime);
my $tbits = 8 << ($bytes->[13] & 7);
my $pcclk = int ($ddrclk * $tbits / 8);
# Round down to comply with Jedec
$pcclk = $pcclk - ($pcclk % 100);
$ddrclk = int ($ddrclk);
printl("Maximum module speed", "$ddrclk MHz (PC4-${pcclk})");
# Size computation
my $sdram_width = 4 << ($bytes->[12] & 0x07);
my $ranks = (($bytes->[12] >> 3) & 0x07) + 1;
my $signal_loading = $bytes->[6] & 0x03;
my $die_count = (($bytes->[6] >> 4) & 0x07) + 1;
my $cap = (256 << ($bytes->[4] & 0x0f)) / 8;
$cap *= (8 << ($bytes->[13] & 0x07)) / $sdram_width;
$cap *= $ranks;
$cap *= $die_count if $signal_loading == 0x02; # 3DS
printl("Size", $cap . " MB");
printl("Banks x Rows x Columns x Bits",
join(' x ', (1 << ($bytes->[4] >> 6)) * (4 << (($bytes->[4] >> 4) & 0x03)),
((($bytes->[5] >> 3) & 7) + 12),
( ($bytes->[5] & 7) + 9),
(8 << ($bytes->[13] & 0x07))));
printl("SDRAM Device Width", "$sdram_width bits");
printl("Ranks", $ranks);
printl_cond($ranks > 1, "Rank Mix",
$bytes->[12] & 0x40 ? "Asymmetrical" : "Symmetrical");
printl_cond($bytes->[13] & 0x18, "Bus Width Extension", ($bytes->[13] & 0x18)." bits");
my $taa;
my $trcd;
my $trp;
my $tras;
$taa = ddr4_mtb_ftb($bytes->[24], $bytes->[123], $mtb, $ftb);
$trcd = ddr4_mtb_ftb($bytes->[25], $bytes->[122], $mtb, $ftb);
$trp = ddr4_mtb_ftb($bytes->[26], $bytes->[121], $mtb, $ftb);
$tras = ((($bytes->[27] & 0x0f) << 8) + $bytes->[28]) * $mtb / 1000;
printl("AA-RCD-RP-RAS (cycles)",
ddr4_core_timings(ceil($taa/$ctime - 0.025), $ctime,
$trcd, $trp, $tras));
# latencies
my %cas;
my $cas_sup = ($bytes->[23] << 24) + ($bytes->[22] << 16) +
($bytes->[21] << 8) + $bytes->[20];
my $base_cas = $bytes->[23] & 0x80 ? 23 : 7;
for ($ii = 0; $ii < 30; $ii++) {
if ($cas_sup & (1 << $ii)) {
$cas{$base_cas + $ii}++;
}
}
printl("Supported CAS Latencies", cas_latencies(keys %cas));
# standard DDR4 speeds
prints("Timings at Standard Speeds");
foreach my $ctime_at_speed (15/24, 15/22, 15/20, 15/18, 15/16, 15/14, 15/12) {
my $best_cas = 0;
# Find min CAS latency at this speed
for ($ii = 29; $ii >= 0; $ii--) {
next unless ($cas_sup & (1 << $ii));
if (ceil($taa/$ctime_at_speed - 0.025) <= $base_cas + $ii) {
$best_cas = $base_cas + $ii;
}
}
printl_cond($best_cas && $ctime_at_speed >= $ctime
&& $ctime_at_speed <= $ctime_max,
"AA-RCD-RP-RAS (cycles)" . as_ddr(4, $ctime_at_speed),
ddr4_core_timings($best_cas, $ctime_at_speed,
$trcd, $trp, $tras));
}
# more timing information
prints("Timing Parameters");
printl("Minimum Cycle Time (tCKmin)", tns3($ctime));
printl("Maximum Cycle Time (tCKmax)", tns3($ctime_max));
printl("Minimum CAS Latency Time (tAA)", tns3($taa));
printl("Minimum RAS to CAS Delay (tRCD)", tns3($trcd));
printl("Minimum Row Precharge Delay (tRP)", tns3($trp));
printl("Minimum Active to Precharge Delay (tRAS)", tns3($tras));
printl("Minimum Active to Auto-Refresh Delay (tRC)",
tns3(ddr4_mtb_ftb((($bytes->[27] & 0xf0) << 4) + $bytes->[29],
$bytes->[120], $mtb, $ftb)));
printl("Minimum Recovery Delay (tRFC1)",
tns3((($bytes->[31] << 8) + $bytes->[30]) * $mtb / 1000));
printl("Minimum Recovery Delay (tRFC2)",
tns3((($bytes->[33] << 8) + $bytes->[32]) * $mtb / 1000));
printl("Minimum Recovery Delay (tRFC4)",
tns3((($bytes->[35] << 8) + $bytes->[34]) * $mtb / 1000));
printl("Minimum Four Activate Window Delay (tFAW)",
tns3(((($bytes->[36] & 0x0f) << 8) + $bytes->[37]) * $mtb / 1000));
printl("Minimum Row Active to Row Active Delay (tRRD_S)",
tns3(ddr4_mtb_ftb($bytes->[38], $bytes->[119], $mtb, $ftb)));
printl("Minimum Row Active to Row Active Delay (tRRD_L)",
tns3(ddr4_mtb_ftb($bytes->[39], $bytes->[118], $mtb, $ftb)));
printl("Minimum CAS to CAS Delay (tCCD_L)",
tns3(ddr4_mtb_ftb($bytes->[40], $bytes->[117], $mtb, $ftb)));
# Optional?
my $twr = ((($bytes->[41] & 0x0f) << 8) + $bytes->[42]) * $mtb / 1000;
printl_cond($twr, "Minimum Write Recovery Time (tWR)", tns3($twr));
my $twtr = ((($bytes->[43] & 0x0f) << 8) + $bytes->[44]) * $mtb / 1000;
printl_cond($twtr, "Minimum Write to Read Time (tWTR_S)", tns3($twtr));
$twtr = ((($bytes->[43] & 0xf0) << 4) + $bytes->[45]) * $mtb / 1000;
printl_cond($twtr, "Minimum Write to Read Time (tWTR_L)", tns3($twtr));
}
# Parameter: EEPROM bytes 0-127 (using 4-5)

Loading…
Cancel
Save