|
|
/**
****************************************************************************** * @file stm32f4xx_ll_spi.h * @author MCD Application Team * @brief Header file of SPI LL module. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */
/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef STM32F4xx_LL_SPI_H
#define STM32F4xx_LL_SPI_H
#ifdef __cplusplus
extern "C" { #endif
/* Includes ------------------------------------------------------------------*/ #include "stm32f4xx.h"
/** @addtogroup STM32F4xx_LL_Driver
* @{ */
#if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6)
/** @defgroup SPI_LL SPI
* @{ */
/* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
* @{ */
/**
* @brief SPI Init structures definition */ typedef struct { uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode.
This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave).
This parameter can be a value of @ref SPI_LL_EC_MODE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
uint32_t DataWidth; /*!< Specifies the SPI data width.
This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
uint32_t ClockPolarity; /*!< Specifies the serial clock steady state.
This parameter can be a value of @ref SPI_LL_EC_POLARITY.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture.
This parameter can be a value of @ref SPI_LL_EC_PHASE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER. @note The communication clock is derived from the master clock. The slave clock does not need to be set.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit.
This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/
} LL_SPI_InitTypeDef;
/**
* @} */ #endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
* @{ */
/** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_SPI_ReadReg function * @{ */ #define LL_SPI_SR_RXNE SPI_SR_RXNE /*!< Rx buffer not empty flag */
#define LL_SPI_SR_TXE SPI_SR_TXE /*!< Tx buffer empty flag */
#define LL_SPI_SR_BSY SPI_SR_BSY /*!< Busy flag */
#define LL_SPI_SR_CRCERR SPI_SR_CRCERR /*!< CRC error flag */
#define LL_SPI_SR_MODF SPI_SR_MODF /*!< Mode fault flag */
#define LL_SPI_SR_OVR SPI_SR_OVR /*!< Overrun flag */
#define LL_SPI_SR_FRE SPI_SR_FRE /*!< TI mode frame format error flag */
/**
* @} */
/** @defgroup SPI_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions * @{ */ #define LL_SPI_CR2_RXNEIE SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
#define LL_SPI_CR2_TXEIE SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
#define LL_SPI_CR2_ERRIE SPI_CR2_ERRIE /*!< Error interrupt enable */
/**
* @} */
/** @defgroup SPI_LL_EC_MODE Operation Mode
* @{ */ #define LL_SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI) /*!< Master configuration */
#define LL_SPI_MODE_SLAVE 0x00000000U /*!< Slave configuration */
/**
* @} */
/** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
* @{ */ #define LL_SPI_PROTOCOL_MOTOROLA 0x00000000U /*!< Motorola mode. Used as default value */
#define LL_SPI_PROTOCOL_TI (SPI_CR2_FRF) /*!< TI mode */
/**
* @} */
/** @defgroup SPI_LL_EC_PHASE Clock Phase
* @{ */ #define LL_SPI_PHASE_1EDGE 0x00000000U /*!< First clock transition is the first data capture edge */
#define LL_SPI_PHASE_2EDGE (SPI_CR1_CPHA) /*!< Second clock transition is the first data capture edge */
/**
* @} */
/** @defgroup SPI_LL_EC_POLARITY Clock Polarity
* @{ */ #define LL_SPI_POLARITY_LOW 0x00000000U /*!< Clock to 0 when idle */
#define LL_SPI_POLARITY_HIGH (SPI_CR1_CPOL) /*!< Clock to 1 when idle */
/**
* @} */
/** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
* @{ */ #define LL_SPI_BAUDRATEPRESCALER_DIV2 0x00000000U /*!< BaudRate control equal to fPCLK/2 */
#define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/4 */
#define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/8 */
#define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/16 */
#define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CR1_BR_2) /*!< BaudRate control equal to fPCLK/32 */
#define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CR1_BR_2 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/64 */
#define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CR1_BR_2 | SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/128 */
#define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/256 */
/**
* @} */
/** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
* @{ */ #define LL_SPI_LSB_FIRST (SPI_CR1_LSBFIRST) /*!< Data is transmitted/received with the LSB first */
#define LL_SPI_MSB_FIRST 0x00000000U /*!< Data is transmitted/received with the MSB first */
/**
* @} */
/** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
* @{ */ #define LL_SPI_FULL_DUPLEX 0x00000000U /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
#define LL_SPI_SIMPLEX_RX (SPI_CR1_RXONLY) /*!< Simplex Rx mode. Rx transfer only on 1 line */
#define LL_SPI_HALF_DUPLEX_RX (SPI_CR1_BIDIMODE) /*!< Half-Duplex Rx mode. Rx transfer on 1 line */
#define LL_SPI_HALF_DUPLEX_TX (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE) /*!< Half-Duplex Tx mode. Tx transfer on 1 line */
/**
* @} */
/** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
* @{ */ #define LL_SPI_NSS_SOFT (SPI_CR1_SSM) /*!< NSS managed internally. NSS pin not used and free */
#define LL_SPI_NSS_HARD_INPUT 0x00000000U /*!< NSS pin used in Input. Only used in Master mode */
#define LL_SPI_NSS_HARD_OUTPUT (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
/**
* @} */
/** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
* @{ */ #define LL_SPI_DATAWIDTH_8BIT 0x00000000U /*!< Data length for SPI transfer: 8 bits */
#define LL_SPI_DATAWIDTH_16BIT (SPI_CR1_DFF) /*!< Data length for SPI transfer: 16 bits */
/**
* @} */ #if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
* @{ */ #define LL_SPI_CRCCALCULATION_DISABLE 0x00000000U /*!< CRC calculation disabled */
#define LL_SPI_CRCCALCULATION_ENABLE (SPI_CR1_CRCEN) /*!< CRC calculation enabled */
/**
* @} */ #endif /* USE_FULL_LL_DRIVER */
/**
* @} */
/* Exported macro ------------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
* @{ */
/** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
* @{ */
/**
* @brief Write a value in SPI register * @param __INSTANCE__ SPI Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in SPI register * @param __INSTANCE__ SPI Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @} */
/**
* @} */
/* Exported functions --------------------------------------------------------*/ /** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
* @{ */
/** @defgroup SPI_LL_EF_Configuration Configuration
* @{ */
/**
* @brief Enable SPI peripheral * @rmtoll CR1 SPE LL_SPI_Enable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_SPE); }
/**
* @brief Disable SPI peripheral * @note When disabling the SPI, follow the procedure described in the Reference Manual. * @rmtoll CR1 SPE LL_SPI_Disable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE); }
/**
* @brief Check if SPI peripheral is enabled * @rmtoll CR1 SPE LL_SPI_IsEnabled * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE)) ? 1UL : 0UL); }
/**
* @brief Set SPI operation mode to Master or Slave * @note This bit should not be changed when communication is ongoing. * @rmtoll CR1 MSTR LL_SPI_SetMode\n * CR1 SSI LL_SPI_SetMode * @param SPIx SPI Instance * @param Mode This parameter can be one of the following values: * @arg @ref LL_SPI_MODE_MASTER * @arg @ref LL_SPI_MODE_SLAVE * @retval None */ __STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode) { MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode); }
/**
* @brief Get SPI operation mode (Master or Slave) * @rmtoll CR1 MSTR LL_SPI_GetMode\n * CR1 SSI LL_SPI_GetMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_MODE_MASTER * @arg @ref LL_SPI_MODE_SLAVE */ __STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI)); }
/**
* @brief Set serial protocol used * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR2 FRF LL_SPI_SetStandard * @param SPIx SPI Instance * @param Standard This parameter can be one of the following values: * @arg @ref LL_SPI_PROTOCOL_MOTOROLA * @arg @ref LL_SPI_PROTOCOL_TI * @retval None */ __STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard); }
/**
* @brief Get serial protocol used * @rmtoll CR2 FRF LL_SPI_GetStandard * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_PROTOCOL_MOTOROLA * @arg @ref LL_SPI_PROTOCOL_TI */ __STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF)); }
/**
* @brief Set clock phase * @note This bit should not be changed when communication is ongoing. * This bit is not used in SPI TI mode. * @rmtoll CR1 CPHA LL_SPI_SetClockPhase * @param SPIx SPI Instance * @param ClockPhase This parameter can be one of the following values: * @arg @ref LL_SPI_PHASE_1EDGE * @arg @ref LL_SPI_PHASE_2EDGE * @retval None */ __STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase) { MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase); }
/**
* @brief Get clock phase * @rmtoll CR1 CPHA LL_SPI_GetClockPhase * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_PHASE_1EDGE * @arg @ref LL_SPI_PHASE_2EDGE */ __STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA)); }
/**
* @brief Set clock polarity * @note This bit should not be changed when communication is ongoing. * This bit is not used in SPI TI mode. * @rmtoll CR1 CPOL LL_SPI_SetClockPolarity * @param SPIx SPI Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_SPI_POLARITY_LOW * @arg @ref LL_SPI_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity) { MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity); }
/**
* @brief Get clock polarity * @rmtoll CR1 CPOL LL_SPI_GetClockPolarity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_POLARITY_LOW * @arg @ref LL_SPI_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL)); }
/**
* @brief Set baud rate prescaler * @note These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler. * @rmtoll CR1 BR LL_SPI_SetBaudRatePrescaler * @param SPIx SPI Instance * @param BaudRate This parameter can be one of the following values: * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256 * @retval None */ __STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate) { MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate); }
/**
* @brief Get baud rate prescaler * @rmtoll CR1 BR LL_SPI_GetBaudRatePrescaler * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128 * @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256 */ __STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR)); }
/**
* @brief Set transfer bit order * @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode. * @rmtoll CR1 LSBFIRST LL_SPI_SetTransferBitOrder * @param SPIx SPI Instance * @param BitOrder This parameter can be one of the following values: * @arg @ref LL_SPI_LSB_FIRST * @arg @ref LL_SPI_MSB_FIRST * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder) { MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder); }
/**
* @brief Get transfer bit order * @rmtoll CR1 LSBFIRST LL_SPI_GetTransferBitOrder * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_LSB_FIRST * @arg @ref LL_SPI_MSB_FIRST */ __STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST)); }
/**
* @brief Set transfer direction mode * @note For Half-Duplex mode, Rx Direction is set by default. * In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex. * @rmtoll CR1 RXONLY LL_SPI_SetTransferDirection\n * CR1 BIDIMODE LL_SPI_SetTransferDirection\n * CR1 BIDIOE LL_SPI_SetTransferDirection * @param SPIx SPI Instance * @param TransferDirection This parameter can be one of the following values: * @arg @ref LL_SPI_FULL_DUPLEX * @arg @ref LL_SPI_SIMPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX * @retval None */ __STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection) { MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection); }
/**
* @brief Get transfer direction mode * @rmtoll CR1 RXONLY LL_SPI_GetTransferDirection\n * CR1 BIDIMODE LL_SPI_GetTransferDirection\n * CR1 BIDIOE LL_SPI_GetTransferDirection * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_FULL_DUPLEX * @arg @ref LL_SPI_SIMPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_RX * @arg @ref LL_SPI_HALF_DUPLEX_TX */ __STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE)); }
/**
* @brief Set frame data width * @rmtoll CR1 DFF LL_SPI_SetDataWidth * @param SPIx SPI Instance * @param DataWidth This parameter can be one of the following values: * @arg @ref LL_SPI_DATAWIDTH_8BIT * @arg @ref LL_SPI_DATAWIDTH_16BIT * @retval None */ __STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth) { MODIFY_REG(SPIx->CR1, SPI_CR1_DFF, DataWidth); }
/**
* @brief Get frame data width * @rmtoll CR1 DFF LL_SPI_GetDataWidth * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_DATAWIDTH_8BIT * @arg @ref LL_SPI_DATAWIDTH_16BIT */ __STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_DFF)); }
/**
* @} */
/** @defgroup SPI_LL_EF_CRC_Management CRC Management
* @{ */
/**
* @brief Enable CRC * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR1 CRCEN LL_SPI_EnableCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CRCEN); }
/**
* @brief Disable CRC * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR1 CRCEN LL_SPI_DisableCRC * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN); }
/**
* @brief Check if CRC is enabled * @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation. * @rmtoll CR1 CRCEN LL_SPI_IsEnabledCRC * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN)) ? 1UL : 0UL); }
/**
* @brief Set CRCNext to transfer CRC on the line * @note This bit has to be written as soon as the last data is written in the SPIx_DR register. * @rmtoll CR1 CRCNEXT LL_SPI_SetCRCNext * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT); }
/**
* @brief Set polynomial for CRC calculation * @rmtoll CRCPR CRCPOLY LL_SPI_SetCRCPolynomial * @param SPIx SPI Instance * @param CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly) { WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly); }
/**
* @brief Get polynomial for CRC calculation * @rmtoll CRCPR CRCPOLY LL_SPI_GetCRCPolynomial * @param SPIx SPI Instance * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->CRCPR)); }
/**
* @brief Get Rx CRC * @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC * @param SPIx SPI Instance * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->RXCRCR)); }
/**
* @brief Get Tx CRC * @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC * @param SPIx SPI Instance * @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF */ __STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx) { return (uint32_t)(READ_REG(SPIx->TXCRCR)); }
/**
* @} */
/** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
* @{ */
/**
* @brief Set NSS mode * @note LL_SPI_NSS_SOFT Mode is not used in SPI TI mode. * @rmtoll CR1 SSM LL_SPI_SetNSSMode\n * @rmtoll CR2 SSOE LL_SPI_SetNSSMode * @param SPIx SPI Instance * @param NSS This parameter can be one of the following values: * @arg @ref LL_SPI_NSS_SOFT * @arg @ref LL_SPI_NSS_HARD_INPUT * @arg @ref LL_SPI_NSS_HARD_OUTPUT * @retval None */ __STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS) { MODIFY_REG(SPIx->CR1, SPI_CR1_SSM, NSS); MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U))); }
/**
* @brief Get NSS mode * @rmtoll CR1 SSM LL_SPI_GetNSSMode\n * @rmtoll CR2 SSOE LL_SPI_GetNSSMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_SPI_NSS_SOFT * @arg @ref LL_SPI_NSS_HARD_INPUT * @arg @ref LL_SPI_NSS_HARD_OUTPUT */ __STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx) { uint32_t Ssm = (READ_BIT(SPIx->CR1, SPI_CR1_SSM)); uint32_t Ssoe = (READ_BIT(SPIx->CR2, SPI_CR2_SSOE) << 16U); return (Ssm | Ssoe); }
/**
* @} */
/** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
* @{ */
/**
* @brief Check if Rx buffer is not empty * @rmtoll SR RXNE LL_SPI_IsActiveFlag_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE)) ? 1UL : 0UL); }
/**
* @brief Check if Tx buffer is empty * @rmtoll SR TXE LL_SPI_IsActiveFlag_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE)) ? 1UL : 0UL); }
/**
* @brief Get CRC error flag * @rmtoll SR CRCERR LL_SPI_IsActiveFlag_CRCERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR)) ? 1UL : 0UL); }
/**
* @brief Get mode fault error flag * @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF)) ? 1UL : 0UL); }
/**
* @brief Get overrun error flag * @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR)) ? 1UL : 0UL); }
/**
* @brief Get busy flag * @note The BSY flag is cleared under any one of the following conditions: * -When the SPI is correctly disabled * -When a fault is detected in Master mode (MODF bit set to 1) * -In Master mode, when it finishes a data transmission and no new data is ready to be * sent * -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between * each data transfer. * @rmtoll SR BSY LL_SPI_IsActiveFlag_BSY * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY)) ? 1UL : 0UL); }
/**
* @brief Get frame format error flag * @rmtoll SR FRE LL_SPI_IsActiveFlag_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE)) ? 1UL : 0UL); }
/**
* @brief Clear CRC error flag * @rmtoll SR CRCERR LL_SPI_ClearFlag_CRCERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR); }
/**
* @brief Clear mode fault error flag * @note Clearing this flag is done by a read access to the SPIx_SR * register followed by a write access to the SPIx_CR1 register * @rmtoll SR MODF LL_SPI_ClearFlag_MODF * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg_sr; tmpreg_sr = SPIx->SR; (void) tmpreg_sr; CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE); }
/**
* @brief Clear overrun error flag * @note Clearing this flag is done by a read access to the SPIx_DR * register followed by a read access to the SPIx_SR register * @rmtoll SR OVR LL_SPI_ClearFlag_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->DR; (void) tmpreg; tmpreg = SPIx->SR; (void) tmpreg; }
/**
* @brief Clear frame format error flag * @note Clearing this flag is done by reading SPIx_SR register * @rmtoll SR FRE LL_SPI_ClearFlag_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->SR; (void) tmpreg; }
/**
* @} */
/** @defgroup SPI_LL_EF_IT_Management Interrupt Management
* @{ */
/**
* @brief Enable error interrupt * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode). * @rmtoll CR2 ERRIE LL_SPI_EnableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_ERRIE); }
/**
* @brief Enable Rx buffer not empty interrupt * @rmtoll CR2 RXNEIE LL_SPI_EnableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE); }
/**
* @brief Enable Tx buffer empty interrupt * @rmtoll CR2 TXEIE LL_SPI_EnableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_TXEIE); }
/**
* @brief Disable error interrupt * @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode). * @rmtoll CR2 ERRIE LL_SPI_DisableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE); }
/**
* @brief Disable Rx buffer not empty interrupt * @rmtoll CR2 RXNEIE LL_SPI_DisableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE); }
/**
* @brief Disable Tx buffer empty interrupt * @rmtoll CR2 TXEIE LL_SPI_DisableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE); }
/**
* @brief Check if error interrupt is enabled * @rmtoll CR2 ERRIE LL_SPI_IsEnabledIT_ERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE)) ? 1UL : 0UL); }
/**
* @brief Check if Rx buffer not empty interrupt is enabled * @rmtoll CR2 RXNEIE LL_SPI_IsEnabledIT_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE)) ? 1UL : 0UL); }
/**
* @brief Check if Tx buffer empty interrupt * @rmtoll CR2 TXEIE LL_SPI_IsEnabledIT_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE)) ? 1UL : 0UL); }
/**
* @} */
/** @defgroup SPI_LL_EF_DMA_Management DMA Management
* @{ */
/**
* @brief Enable DMA Rx * @rmtoll CR2 RXDMAEN LL_SPI_EnableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN); }
/**
* @brief Disable DMA Rx * @rmtoll CR2 RXDMAEN LL_SPI_DisableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN); }
/**
* @brief Check if DMA Rx is enabled * @rmtoll CR2 RXDMAEN LL_SPI_IsEnabledDMAReq_RX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN)) ? 1UL : 0UL); }
/**
* @brief Enable DMA Tx * @rmtoll CR2 TXDMAEN LL_SPI_EnableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx) { SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN); }
/**
* @brief Disable DMA Tx * @rmtoll CR2 TXDMAEN LL_SPI_DisableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN); }
/**
* @brief Check if DMA Tx is enabled * @rmtoll CR2 TXDMAEN LL_SPI_IsEnabledDMAReq_TX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN)) ? 1UL : 0UL); }
/**
* @brief Get the data register address used for DMA transfer * @rmtoll DR DR LL_SPI_DMA_GetRegAddr * @param SPIx SPI Instance * @retval Address of data register */ __STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx) { return (uint32_t) &(SPIx->DR); }
/**
* @} */
/** @defgroup SPI_LL_EF_DATA_Management DATA Management
* @{ */
/**
* @brief Read 8-Bits in the data register * @rmtoll DR DR LL_SPI_ReceiveData8 * @param SPIx SPI Instance * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF */ __STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx) { return (*((__IO uint8_t *)&SPIx->DR)); }
/**
* @brief Read 16-Bits in the data register * @rmtoll DR DR LL_SPI_ReceiveData16 * @param SPIx SPI Instance * @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF */ __STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx) { return (uint16_t)(READ_REG(SPIx->DR)); }
/**
* @brief Write 8-Bits in the data register * @rmtoll DR DR LL_SPI_TransmitData8 * @param SPIx SPI Instance * @param TxData Value between Min_Data=0x00 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData) { #if defined (__GNUC__)
__IO uint8_t *spidr = ((__IO uint8_t *)&SPIx->DR); *spidr = TxData; #else
*((__IO uint8_t *)&SPIx->DR) = TxData; #endif /* __GNUC__ */
}
/**
* @brief Write 16-Bits in the data register * @rmtoll DR DR LL_SPI_TransmitData16 * @param SPIx SPI Instance * @param TxData Value between Min_Data=0x00 and Max_Data=0xFFFF * @retval None */ __STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData) { #if defined (__GNUC__)
__IO uint16_t *spidr = ((__IO uint16_t *)&SPIx->DR); *spidr = TxData; #else
SPIx->DR = TxData; #endif /* __GNUC__ */
}
/**
* @} */ #if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
* @{ */
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx); ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct); void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
/**
* @} */ #endif /* USE_FULL_LL_DRIVER */
/**
* @} */
/**
* @} */
/** @defgroup I2S_LL I2S
* @{ */
/* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
* @{ */
/**
* @brief I2S Init structure definition */
typedef struct { uint32_t Mode; /*!< Specifies the I2S operating mode.
This parameter can be a value of @ref I2S_LL_EC_MODE
This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/
uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_STANDARD
This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/
uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/
uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/
uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock.
This parameter can be a value of @ref I2S_LL_EC_POLARITY
This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/
} LL_I2S_InitTypeDef;
/**
* @} */ #endif /*USE_FULL_LL_DRIVER*/
/* Exported constants --------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
* @{ */
/** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_I2S_ReadReg function * @{ */ #define LL_I2S_SR_RXNE LL_SPI_SR_RXNE /*!< Rx buffer not empty flag */
#define LL_I2S_SR_TXE LL_SPI_SR_TXE /*!< Tx buffer empty flag */
#define LL_I2S_SR_BSY LL_SPI_SR_BSY /*!< Busy flag */
#define LL_I2S_SR_UDR SPI_SR_UDR /*!< Underrun flag */
#define LL_I2S_SR_OVR LL_SPI_SR_OVR /*!< Overrun flag */
#define LL_I2S_SR_FRE LL_SPI_SR_FRE /*!< TI mode frame format error flag */
/**
* @} */
/** @defgroup SPI_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions * @{ */ #define LL_I2S_CR2_RXNEIE LL_SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
#define LL_I2S_CR2_TXEIE LL_SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
#define LL_I2S_CR2_ERRIE LL_SPI_CR2_ERRIE /*!< Error interrupt enable */
/**
* @} */
/** @defgroup I2S_LL_EC_DATA_FORMAT Data format
* @{ */ #define LL_I2S_DATAFORMAT_16B 0x00000000U /*!< Data length 16 bits, Channel length 16bit */
#define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) /*!< Data length 16 bits, Channel length 32bit */
#define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) /*!< Data length 24 bits, Channel length 32bit */
#define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /*!< Data length 16 bits, Channel length 32bit */
/**
* @} */
/** @defgroup I2S_LL_EC_POLARITY Clock Polarity
* @{ */ #define LL_I2S_POLARITY_LOW 0x00000000U /*!< Clock steady state is low level */
#define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /*!< Clock steady state is high level */
/**
* @} */
/** @defgroup I2S_LL_EC_STANDARD I2s Standard
* @{ */ #define LL_I2S_STANDARD_PHILIPS 0x00000000U /*!< I2S standard philips */
#define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) /*!< MSB justified standard (left justified) */
#define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) /*!< LSB justified standard (right justified) */
#define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) /*!< PCM standard, short frame synchronization */
#define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization */
/**
* @} */
/** @defgroup I2S_LL_EC_MODE Operation Mode
* @{ */ #define LL_I2S_MODE_SLAVE_TX 0x00000000U /*!< Slave Tx configuration */
#define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) /*!< Slave Rx configuration */
#define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) /*!< Master Tx configuration */
#define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
/**
* @} */
/** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
* @{ */ #define LL_I2S_PRESCALER_PARITY_EVEN 0x00000000U /*!< Odd factor: Real divider value is = I2SDIV * 2 */
#define LL_I2S_PRESCALER_PARITY_ODD (SPI_I2SPR_ODD >> 8U) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
/**
* @} */
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
* @{ */ #define LL_I2S_MCLK_OUTPUT_DISABLE 0x00000000U /*!< Master clock output is disabled */
#define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SPR_MCKOE) /*!< Master clock output is enabled */
/**
* @} */
/** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
* @{ */
#define LL_I2S_AUDIOFREQ_192K 192000U /*!< Audio Frequency configuration 192000 Hz */
#define LL_I2S_AUDIOFREQ_96K 96000U /*!< Audio Frequency configuration 96000 Hz */
#define LL_I2S_AUDIOFREQ_48K 48000U /*!< Audio Frequency configuration 48000 Hz */
#define LL_I2S_AUDIOFREQ_44K 44100U /*!< Audio Frequency configuration 44100 Hz */
#define LL_I2S_AUDIOFREQ_32K 32000U /*!< Audio Frequency configuration 32000 Hz */
#define LL_I2S_AUDIOFREQ_22K 22050U /*!< Audio Frequency configuration 22050 Hz */
#define LL_I2S_AUDIOFREQ_16K 16000U /*!< Audio Frequency configuration 16000 Hz */
#define LL_I2S_AUDIOFREQ_11K 11025U /*!< Audio Frequency configuration 11025 Hz */
#define LL_I2S_AUDIOFREQ_8K 8000U /*!< Audio Frequency configuration 8000 Hz */
#define LL_I2S_AUDIOFREQ_DEFAULT 2U /*!< Audio Freq not specified. Register I2SDIV = 2 */
/**
* @} */ #endif /* USE_FULL_LL_DRIVER */
/**
* @} */
/* Exported macro ------------------------------------------------------------*/ /** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
* @{ */
/** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
* @{ */
/**
* @brief Write a value in I2S register * @param __INSTANCE__ I2S Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in I2S register * @param __INSTANCE__ I2S Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @} */
/**
* @} */
/* Exported functions --------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
* @{ */
/** @defgroup I2S_LL_EF_Configuration Configuration
* @{ */
/**
* @brief Select I2S mode and Enable I2S peripheral * @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n * I2SCFGR I2SE LL_I2S_Enable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE); }
/**
* @brief Disable I2S peripheral * @rmtoll I2SCFGR I2SE LL_I2S_Disable * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE); }
/**
* @brief Check if I2S peripheral is enabled * @rmtoll I2SCFGR I2SE LL_I2S_IsEnabled * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE)) ? 1UL : 0UL); }
/**
* @brief Set I2S data frame length * @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n * I2SCFGR CHLEN LL_I2S_SetDataFormat * @param SPIx SPI Instance * @param DataFormat This parameter can be one of the following values: * @arg @ref LL_I2S_DATAFORMAT_16B * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED * @arg @ref LL_I2S_DATAFORMAT_24B * @arg @ref LL_I2S_DATAFORMAT_32B * @retval None */ __STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat); }
/**
* @brief Get I2S data frame length * @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n * I2SCFGR CHLEN LL_I2S_GetDataFormat * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_DATAFORMAT_16B * @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED * @arg @ref LL_I2S_DATAFORMAT_24B * @arg @ref LL_I2S_DATAFORMAT_32B */ __STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN)); }
/**
* @brief Set I2S clock polarity * @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity * @param SPIx SPI Instance * @param ClockPolarity This parameter can be one of the following values: * @arg @ref LL_I2S_POLARITY_LOW * @arg @ref LL_I2S_POLARITY_HIGH * @retval None */ __STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity) { SET_BIT(SPIx->I2SCFGR, ClockPolarity); }
/**
* @brief Get I2S clock polarity * @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_POLARITY_LOW * @arg @ref LL_I2S_POLARITY_HIGH */ __STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL)); }
/**
* @brief Set I2S standard protocol * @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n * I2SCFGR PCMSYNC LL_I2S_SetStandard * @param SPIx SPI Instance * @param Standard This parameter can be one of the following values: * @arg @ref LL_I2S_STANDARD_PHILIPS * @arg @ref LL_I2S_STANDARD_MSB * @arg @ref LL_I2S_STANDARD_LSB * @arg @ref LL_I2S_STANDARD_PCM_SHORT * @arg @ref LL_I2S_STANDARD_PCM_LONG * @retval None */ __STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard); }
/**
* @brief Get I2S standard protocol * @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n * I2SCFGR PCMSYNC LL_I2S_GetStandard * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_STANDARD_PHILIPS * @arg @ref LL_I2S_STANDARD_MSB * @arg @ref LL_I2S_STANDARD_LSB * @arg @ref LL_I2S_STANDARD_PCM_SHORT * @arg @ref LL_I2S_STANDARD_PCM_LONG */ __STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC)); }
/**
* @brief Set I2S transfer mode * @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode * @param SPIx SPI Instance * @param Mode This parameter can be one of the following values: * @arg @ref LL_I2S_MODE_SLAVE_TX * @arg @ref LL_I2S_MODE_SLAVE_RX * @arg @ref LL_I2S_MODE_MASTER_TX * @arg @ref LL_I2S_MODE_MASTER_RX * @retval None */ __STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode) { MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode); }
/**
* @brief Get I2S transfer mode * @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_MODE_SLAVE_TX * @arg @ref LL_I2S_MODE_SLAVE_RX * @arg @ref LL_I2S_MODE_MASTER_TX * @arg @ref LL_I2S_MODE_MASTER_RX */ __STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG)); }
/**
* @brief Set I2S linear prescaler * @rmtoll I2SPR I2SDIV LL_I2S_SetPrescalerLinear * @param SPIx SPI Instance * @param PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF * @retval None */ __STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear) { MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear); }
/**
* @brief Get I2S linear prescaler * @rmtoll I2SPR I2SDIV LL_I2S_GetPrescalerLinear * @param SPIx SPI Instance * @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF */ __STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV)); }
/**
* @brief Set I2S parity prescaler * @rmtoll I2SPR ODD LL_I2S_SetPrescalerParity * @param SPIx SPI Instance * @param PrescalerParity This parameter can be one of the following values: * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN * @arg @ref LL_I2S_PRESCALER_PARITY_ODD * @retval None */ __STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity) { MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U); }
/**
* @brief Get I2S parity prescaler * @rmtoll I2SPR ODD LL_I2S_GetPrescalerParity * @param SPIx SPI Instance * @retval Returned value can be one of the following values: * @arg @ref LL_I2S_PRESCALER_PARITY_EVEN * @arg @ref LL_I2S_PRESCALER_PARITY_ODD */ __STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx) { return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U); }
/**
* @brief Enable the master clock output (Pin MCK) * @rmtoll I2SPR MCKOE LL_I2S_EnableMasterClock * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE); }
/**
* @brief Disable the master clock output (Pin MCK) * @rmtoll I2SPR MCKOE LL_I2S_DisableMasterClock * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE); }
/**
* @brief Check if the master clock output (Pin MCK) is enabled * @rmtoll I2SPR MCKOE LL_I2S_IsEnabledMasterClock * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE)) ? 1UL : 0UL); }
#if defined(SPI_I2SCFGR_ASTRTEN)
/**
* @brief Enable asynchronous start * @rmtoll I2SCFGR ASTRTEN LL_I2S_EnableAsyncStart * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableAsyncStart(SPI_TypeDef *SPIx) { SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN); }
/**
* @brief Disable asynchronous start * @rmtoll I2SCFGR ASTRTEN LL_I2S_DisableAsyncStart * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableAsyncStart(SPI_TypeDef *SPIx) { CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN); }
/**
* @brief Check if asynchronous start is enabled * @rmtoll I2SCFGR ASTRTEN LL_I2S_IsEnabledAsyncStart * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledAsyncStart(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_ASTRTEN) == (SPI_I2SCFGR_ASTRTEN)) ? 1UL : 0UL); } #endif /* SPI_I2SCFGR_ASTRTEN */
/**
* @} */
/** @defgroup I2S_LL_EF_FLAG FLAG Management
* @{ */
/**
* @brief Check if Rx buffer is not empty * @rmtoll SR RXNE LL_I2S_IsActiveFlag_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_RXNE(SPIx); }
/**
* @brief Check if Tx buffer is empty * @rmtoll SR TXE LL_I2S_IsActiveFlag_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_TXE(SPIx); }
/**
* @brief Get busy flag * @rmtoll SR BSY LL_I2S_IsActiveFlag_BSY * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_BSY(SPIx); }
/**
* @brief Get overrun error flag * @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_OVR(SPIx); }
/**
* @brief Get underrun error flag * @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR)) ? 1UL : 0UL); }
/**
* @brief Get frame format error flag * @rmtoll SR FRE LL_I2S_IsActiveFlag_FRE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx) { return LL_SPI_IsActiveFlag_FRE(SPIx); }
/**
* @brief Get channel side flag. * @note 0: Channel Left has to be transmitted or has been received\n * 1: Channel Right has to be transmitted or has been received\n * It has no significance in PCM mode. * @rmtoll SR CHSIDE LL_I2S_IsActiveFlag_CHSIDE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx) { return ((READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE)) ? 1UL : 0UL); }
/**
* @brief Clear overrun error flag * @rmtoll SR OVR LL_I2S_ClearFlag_OVR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_OVR(SPIx); }
/**
* @brief Clear underrun error flag * @rmtoll SR UDR LL_I2S_ClearFlag_UDR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx) { __IO uint32_t tmpreg; tmpreg = SPIx->SR; (void)tmpreg; }
/**
* @brief Clear frame format error flag * @rmtoll SR FRE LL_I2S_ClearFlag_FRE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx) { LL_SPI_ClearFlag_FRE(SPIx); }
/**
* @} */
/** @defgroup I2S_LL_EF_IT Interrupt Management
* @{ */
/**
* @brief Enable error IT * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode). * @rmtoll CR2 ERRIE LL_I2S_EnableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_ERR(SPIx); }
/**
* @brief Enable Rx buffer not empty IT * @rmtoll CR2 RXNEIE LL_I2S_EnableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_RXNE(SPIx); }
/**
* @brief Enable Tx buffer empty IT * @rmtoll CR2 TXEIE LL_I2S_EnableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx) { LL_SPI_EnableIT_TXE(SPIx); }
/**
* @brief Disable error IT * @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode). * @rmtoll CR2 ERRIE LL_I2S_DisableIT_ERR * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_ERR(SPIx); }
/**
* @brief Disable Rx buffer not empty IT * @rmtoll CR2 RXNEIE LL_I2S_DisableIT_RXNE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_RXNE(SPIx); }
/**
* @brief Disable Tx buffer empty IT * @rmtoll CR2 TXEIE LL_I2S_DisableIT_TXE * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx) { LL_SPI_DisableIT_TXE(SPIx); }
/**
* @brief Check if ERR IT is enabled * @rmtoll CR2 ERRIE LL_I2S_IsEnabledIT_ERR * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_ERR(SPIx); }
/**
* @brief Check if RXNE IT is enabled * @rmtoll CR2 RXNEIE LL_I2S_IsEnabledIT_RXNE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_RXNE(SPIx); }
/**
* @brief Check if TXE IT is enabled * @rmtoll CR2 TXEIE LL_I2S_IsEnabledIT_TXE * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledIT_TXE(SPIx); }
/**
* @} */
/** @defgroup I2S_LL_EF_DMA DMA Management
* @{ */
/**
* @brief Enable DMA Rx * @rmtoll CR2 RXDMAEN LL_I2S_EnableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx) { LL_SPI_EnableDMAReq_RX(SPIx); }
/**
* @brief Disable DMA Rx * @rmtoll CR2 RXDMAEN LL_I2S_DisableDMAReq_RX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx) { LL_SPI_DisableDMAReq_RX(SPIx); }
/**
* @brief Check if DMA Rx is enabled * @rmtoll CR2 RXDMAEN LL_I2S_IsEnabledDMAReq_RX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledDMAReq_RX(SPIx); }
/**
* @brief Enable DMA Tx * @rmtoll CR2 TXDMAEN LL_I2S_EnableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx) { LL_SPI_EnableDMAReq_TX(SPIx); }
/**
* @brief Disable DMA Tx * @rmtoll CR2 TXDMAEN LL_I2S_DisableDMAReq_TX * @param SPIx SPI Instance * @retval None */ __STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx) { LL_SPI_DisableDMAReq_TX(SPIx); }
/**
* @brief Check if DMA Tx is enabled * @rmtoll CR2 TXDMAEN LL_I2S_IsEnabledDMAReq_TX * @param SPIx SPI Instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx) { return LL_SPI_IsEnabledDMAReq_TX(SPIx); }
/**
* @} */
/** @defgroup I2S_LL_EF_DATA DATA Management
* @{ */
/**
* @brief Read 16-Bits in data register * @rmtoll DR DR LL_I2S_ReceiveData16 * @param SPIx SPI Instance * @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF */ __STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx) { return LL_SPI_ReceiveData16(SPIx); }
/**
* @brief Write 16-Bits in data register * @rmtoll DR DR LL_I2S_TransmitData16 * @param SPIx SPI Instance * @param TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF * @retval None */ __STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData) { LL_SPI_TransmitData16(SPIx, TxData); }
/**
* @} */
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
* @{ */
ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx); ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct); void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct); void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity); #if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct); #endif /* SPI_I2S_FULLDUPLEX_SUPPORT */
/**
* @} */ #endif /* USE_FULL_LL_DRIVER */
/**
* @} */
/**
* @} */
#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) || defined (SPI5) || defined(SPI6) */
/**
* @} */
#ifdef __cplusplus
} #endif
#endif /* STM32F4xx_LL_SPI_H */
|