
CAN-bus Series Device
User Manual Date: 2012/12/19 V1.00

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.

www.zlgmcu.com

Common Test Software and Interface Function Library

User
Manual

UM04010000

 ©2012 Guangzhou ZLGMCU Technology Date: 2011/05/19
User Manual V1.02

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

i

RReevviissiioonn HHiissttoorryy

Version Rev. Date Modifications
V1.00 2012-12-19 Original version

 ©2012 Guangzhou ZLGMCU Technology Date: 2011/05/19
User Manual V1.02

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

ii

SSaalleess IInnffoorrmmaattiioonn

Guangzhou ZLGMCU Technology Co., Ltd.
Address: F4 Room, 12 Floor, Everbright BANK Building, 689 Tianhe Northern Road,

Guangzhou, CHINA

TEL: +86-20-38732494 38730972 38730976 38730916 38730917 38730977

FAX: +86-20-38730925

Website: www.zlgmcu.com

Guangzhou Sales Office
Address: Room 203 & 204, XinSaiGE Electronic Building,

Tianhe District, Guangzhou, CHINA
TEL: +86-20-87578634, 87578842, 87569917
FAX: +86-20-87578842

Nanjing Sales Office
Address: Room 1501, Zhujiang Building, 280 Zhujiang

Road, Nanjing, CHINA
TEL: +86-25-68123901, 68123902
FAX: +86-25-68123900

Beijing Sales Office
Address: Room 1207 & 1208, Yingwang Centre, 113

Zhichun Road, Haiding District, Beijing, CHINA
TEL: +86-10-62635033, 62635573, 62635884,

62536178, 62536179, 82628073
FAX: +86-10-82614433

Chongqing Sales Office
Address: Room 1611, Saige electronics market, Daxiyang

International Building, 2 Keyuanyi Road, Shiqiao,
Chongqing, CHINA

TEL: +86-23-68796438, 68796439, 68797619
FAX: +86-23-68796439

Hangzhou Sales Office
Address: Room 502, Jiangnan Electronics Building, 217

Tianmu Road, Hangzhou, CHINA
TEL: +86-571-89719480, 89719481, 89719482,

89719483, 89719484, 89719485
FAX: +86-571-89719494

Chengdu Sales Office
Address: Room 403, Digital Scientific Building, 2 Southern

Yihuan Road, Chengdu, CHINA
TEL: +86-28-85439836, 85432683,

85437446, 85437876
FAX: +86-28-85437896

Shenzhen Sales Office
Address: Room D, Floor 4, C Side, Dianzikeji Building, 2070

ShenNanZhong Road, Shenzhen, CHINA
TEL: +86-755-83781768, 83781788,

83782922, 82941683
FAX: +86-755-83793285

Wuhan Sales Office
Address: Room 12128, Huazhong Computer and

electronics market, 158 LuoYu Road,
GuangFouTun, HongShan District, Wuhan, CHINA

TEL: +86-27-87168497, 87168297, 87168397
FAX: +86-27-87163755

Shanghai Sales Office
Address: Room 7E, Eastern side, Kejijingcheng Building,

668 Beijingdong Road, Shanghai, CHINA
TEL: +86-21-53083452, 53083453,

53083496, 53083497
FAX: +86-21-53083491

XiAn Sales Office
Address: Room 1201, Pacific Building, 54 Changanbei

Road, XiAn, CHINA
TEL: +86-29-87881296, 83063000, 87881295
FAX: +86-29-87880865

http://www.zlgmcu.com/�

 ©2012 Guangzhou ZLGMCU Technology Date: 2011/05/19
User Manual V1.02

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

iii

TTeecchhnniiccaall SSuuppppoorrttss

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
Address: Floor 2, Building No.3 Huangzhou Industrial Estate, Chebei Road,

Tianhe District, Guangzhou, CHINA, Post code: 510660

TEL: +86-20-22644249, 28872524, 22644399, 28872342, 28872349, 28872569, 28872573

FAX: +86-20 38601859

Website: www.embedtools.com www.embedcontrol.com www.ecardsys.com

TTeecchhnniiccaall SSuuppppoorrttss

CAN-bus
TEL: +86-20-22644381, 22644382, 22644253
E-mail: can.support@embedcontrol.com

iCAN & Data collection
TEL: +86-20-28872344, 22644373
E-mail: ican@embedcontrol.com

MiniARM
TEL: +86-20-28872684, 28267813
E-mail: miniarm.support@embedtools.com

Ethernet
TEL: +86-20-22644380, 22644385
E-mail: ethernet.support@embedcontrol.com

Wireless Communication
TEL: +86-20-22644386
E-mail: wireless@embedcontrol.com

Serial Communication
TEL: +86-20-28267800, 22644385
E-mail: serial@embedcontrol.com

Programmer
TEL: +86-20-22644371
E-mail: programmer@embedtools.com

Analyze Tools & Instrument
TEL: +86-20-22644375, 28872624, 28872345
E-mail: tools@embedtools.com

ARM Embedded System Application
TEL: +86-20-28872347, 28872377,

22644383, 22644384
E-mail: arm.support@zlgmcu.com

Building Automation
TEL: +86-20-22644376, 22644389, 28267806
E-mail: mjs.support@ecardsys.com

Sales Contact
TEL: +86-20-22644249, 22644399, 22644372, 22644261, 28872524,

+86-20-28872342, 28872349, 28872569, 28872573, 38601786

Repair and rework
TEL: +86-20-22644245

http://www.embedtools.com/�
http://www.embedcontrol.com/�
http://www.ecardsys.com/�
mailto:can.support@embedcontrol.com�
mailto:ican@embedcontrol.com�
mailto:miniarm.support@embedtools.com�
mailto:ethernet.support@embedcontrol.com�
mailto:wireless@embedcontrol.com�
mailto:serial@embedcontrol.com�
mailto:programmer@embedtools.com�
mailto:tools@embedtools.com�
mailto:arm.support@zlgmcu.com�
mailto:mjs.support@ecardsys.com�

 ©2012 Guangzhou ZLGMCU Technology Date: 2011/05/19
User Manual V1.02

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

iv

CCoonntteennttss

 Chapter 1: Test Software Usage .. 1
1.1 Device operation ... 1

1.1.1 Select device type ... 1
1.1.2 Filter setting ... 3
1.1.3 Start CAN ... 3
1.1.4 Obtain device information .. 4
1.1.5 Data transmission ... 4

1.2 Auxiliary operation ... 5
1.2.1 Frame ID display mode .. 5
1.2.2 Frame ID display format .. 5
1.2.3 Continue to display sent and received data .. 5
1.2.4 Pause to display sent and received data .. 5
1.2.5 Roll ... 5
1.2.6 Display frame number .. 5
1.2.7 Language .. 6

 Chapter 2: Interface Function Library Usage ... 7
2.1 Interface card device type definition .. 7
2.2 Error code definition .. 8
2.3 Function library data structure definition .. 8

2.3.1 VCI_BOARD_INFO .. 8
2.3.2 VCI_CAN_OBJ ... 9
2.3.3 VCI_CAN_STATUS .. 11
2.3.4 VCI_ERR_INFO .. 12
2.3.5 VCI_INIT_CONFIG .. 12
2.3.6 CHGDESIPANDPORT .. 14
2.3.7 VCI_FILTER_RECORD .. 14

2.4 Interface library function specification .. 15
2.4.1 VCI_OpenDevice ... 15
2.4.2 VCI_CloseDevice .. 16
2.4.3 VCI_InitCan ... 16
2.4.4 VCI_ReadBoardInfo .. 21
2.4.5 VCI_ReadErrInfo ... 22
2.4.6 VCI_ReadCanStatus ... 25
2.4.7 VCI_GetReference ... 26
2.4.8 VCI_SetReference .. 32
2.4.9 VCI_GetReceiveNum .. 38
2.4.10 VCI_ClearBuffer .. 38
2.4.11 VCI_StartCAN ... 39

 ©2012 Guangzhou ZLGMCU Technology Date: 2011/05/19
User Manual V1.02

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

v

2.4.12 VCI_ResetCAN .. 40
2.4.13 VCI_Transmit ... 41
2.4.14 VCI_Receive .. 42

2.5 Interface library function usage .. 43
2.5.1 Calling dynamic library with VC ... 43
2.5.2 Calling dynamic library with VB ... 43

2.6 Interface library function usage flow ... 45

 Chapter 3: Dynamic Library Usage in Linux ... 46
3.1 Driver installation ... 46

3.1.1 USBCAN driver installation .. 46
3.1.2 PCI5121 driver installation .. 46

3.2 Dynamic library installation .. 46
3.3 Call and compile dynamic library ... 46

 Chapter 4: Rights & Statements ... 47

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

1

CChhaapptteerr 11:: TTeesstt SSooffttwwaarree UUssaaggee

CAN-bus common test software is designed for testing ZLGCAN series board cards. It
is featured with simple operation and easy-to-use, very convenient for user to perform
testing to the board cards. The main interface is shown as following.

Figure 1-1: CANopen network manage software main interface

1.1 Device operation

1.1.1 Select device type

Before operations, select the device type that you want in the “Type” menu, as Figure
1-2 shows.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

2

Figure 1-2: Select device type

Then, a dialog box “select device” will pop out, as Figure 1-3 shows.

Figure 1-3: Select device

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

3

In this dialog box, you can select the device index to be open and CAN channel, and
then set the initialization parameters. When finishing setting, click the OK button to
open the device operation window, or click OK and Start CAN button to open the device
operation window and start the device and CAN channel automatically,

1.1.2 Filter setting

In the device operation window, click the Filer setting button to perform settings, as
Figure 1-3 shows. If filer setting is not required, please skip this step.

Figure 1-4: Filter setting

Then, a dialog box “Filter setting” will pop up, as Figure 1-4 shows.

Figure 1-5: Select the filter mode

Select the filter mode, and set the CAN frame needed to be filtered by configuring the
filer.

1.1.3 Start CAN

Click the “Start” button to start CAN channel, and right now the received CAN data will
be shown in the data list automatically, as Figure 1-6 shows.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

4

Figure 1-6: Start CAN

After analysis is finished, a dialog window will appear, as Figure 1-7 shows.

1.1.4 Obtain device information

After the CAN channel is started, you can select the “Device information” item in the
“Device operation” pull-down menu to obtain the detailed information of the current
device, as Figure 1-8 shows.

Figure 1-7: Obtain device information

1.1.5 Data transmission

When CAN channel is start successfully, set the parameters for the CAN frame to be
transmitted. The item “receive own message” in the “Send Type” pull-down menu
means the device can receive the CAN frame sent out by itself. What should be notice
is this option is only available in test mode, so please select “Normal” for actual
application.

Figure 1-8: Data transmission setting

Click “Advance” option to enter the advance operation interface. In this page, you can
configure up to 10 CAN frames to be sent at a same time.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

5

Figure 1-9: Advance operation interface

1.2 Auxiliary operation

This software also provides some auxiliary operations for users to monitor and analyze
CAN data.

Figure 1-10: Auxiliary operation

1.2.1 Frame ID display mode

There are 3 frame ID display modes: Binary, Decimal and Hexadecimal.

1.2.2 Frame ID display format

There are two frame ID display formats: real ID and SJA1000 format (standard frame:
the real ID left shift 3 bits; extend frame: the real ID left shift 5 bits).

1.2.3 Continue to display sent and received data

When select this option, data transmission will be processed in foreground, and all the
data will be shown out.

1.2.4 Pause to display sent and received data

When select this option, data transmission will be processed in background, and all the
data will be not shown out.

1.2.5 Roll

When select this option, the last line of the current data list is always visible.

1.2.6 Display frame number

This option is used to set the displayed frame number on the data list.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

6

1.2.7 Language

This option is used to select language.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

7

CChhaapptteerr 22:: IInntteerrffaaccee FFuunnccttiioonn LLiibbrraarryy UUssaaggee

2.1 Interface card device type definition

The type definition of each interface card is as following:

Table 2-1: Type definition of interface card

Device Name Type

PCI5121 1

PCI9810 2

USBCAN1 3

USBCAN2 4

PCI9820 5

CAN232 6

PCI5110 7

CANlite(CANmini) 8

ISA9620 9

ISA5420 10

PC104-CAN 11

CANET-UDP 12

DNP9810 13

PCI9840 14

PC104-CAN2 15

PCI9820I 16

CANET-TCP 17

PEC-9920 18

PCIE-9220 18

PCI-5010-U 19

USBCAN-E-U 20

USBCAN-2E-U 21

PCI-5020-U 22

EG20T-CAN 23

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

8

2.2 Error code definition

Table 2-2: The definition of error code

Name Value Description

CAN error code

ERR_CAN_OVERFLOW 0x00000001 CAN controller internal FIFO overflow

ERR_CAN_ERRALARM 0x00000002 CAN controller error warning

ERR_CAN_PASSIVE 0x00000004 CAN controller passive error

ERR_CAN_LOSE 0x00000008 CAN controller arbitration lost

ERR_CAN_BUSERR 0x00000010 CAN controller bus error

ERR_CAN_BUSOFF 0x00000020 CAN controller bus off

Common error code

ERR_DEVICEOPENED 0x00000100 Device is already open

ERR_DEVICEOPEN 0x00000200 Open device fails

ERR_DEVICENOTOPEN 0x00000400 Device is not open

ERR_BUFFEROVERFLOW 0x00000800 Buffer overflow

ERR_DEVICENOTEXIST 0x00001000 Device is not exist

ERR_LOADKERNELDLL 0x00002000 Load dynamic library fails

ERR_CMDFAILED 0x00004000 Execute command fails

ERR_BUFFERCREATE 0x00008000 Insufficient memory

CANET error code

ERR_CANETE_PORTOPENED 0x00010000 This port is already open

ERR_CANETE_INDEXUSED 0x00020000 This device index is already in used

ERR_REF_TYPE_ID 0x00030001 SetReference or GetReference is a

transferred RefType which is not exist

ERR_CREATE_SOCKET 0x00030002 Create socket fails

ERR_OPEN_CONNECT 0x00030003 Open socket connection fails, the

connection of device may be exist

ERR_NO_STARTUP 0x00030004 This device is not started

ERR_NO_CONNECTED 0x00030005 This device is unconnected

ERR_SEND_PARTIAL 0x00030006 Send partial CAN frame

ERR_SEND_TOO_FAST 0x00030007 Data is sent too fast, Socket buffer is

full

2.3 Function library data structure definition

2.3.1 VCI_BOARD_INFO

2.3.1.1 Description

VCI_BOARD_INFO structure contains the device information of ZLGCAN series

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

9

interface card. This structure will be filled within VCI_ReadBoardInfo function.

typedef struct _VCI_BOARD_INFO {

 USHORT hw_Version;

 USHORT fw_Version;

 USHORT dr_Version;

 USHORT in_Version;

 USHORT irq_Num;

 BYTE can_Num;

 CHAR str_Serial_Num[20];

 CHAR str_hw_Type[40];

 USHORT Reserved[4];

} VCI_BOARD_INFO, *PVCI_BOARD_INFO;

2.3.1.2 Member

hw_Version

Hardware version number (Hexadecimal). For example, 0x0100 is for V1.00.

fw_Version

Firmware version number (Hexadecimal)

dr_Version

Driver version number (Hexadecimal)

in_Version

Interface library version number (Hexadecimal)

irq_Num

Interrupt number for Board card

can_Num

The quality of the CAN channel

str_Serial_Num

Board card serial number

str_hw_Type

This is for Hardware type, such as “USBCAN V1.00”. (Notice: It includes character
string terminator ’\0’).

Reserved

System reserved item

2.3.2 VCI_CAN_OBJ

2.3.2.1 Description

VCI_CAN_OBJ structure is used to transfer CAN information frame in VCI_Transmit

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

10

and VCI_Receive functions.

typedef struct _VCI_CAN_OBJ {

 UINT ID;

 UINT TimeStamp;

 BYTE TimeFlag;

 BYTE SendType;

 BYTE RemoteFlag;

 BYTE ExternFlag;

 BYTE DataLen;

 BYTE Data[8];

 BYTE Reserved[3];

} VCI_CAN_OBJ, *PVCI_CAN_OBJ;

2.3.2.2 Member

ID

Message ID

TimeStamp

This is the time stamp for when information frame is received. It is counted since CAN
controller is initialized.

TimeFlag

This is used to indicate whether the time stamp is in used, in which 1 for TimeStamp is
valid. TimeFlag and TimeStamp are effective only when the frame is a received frame.

SendType

This is used to indicate the transmission mode, in which 0 is for normal, 1 is for single
transmission, 2 is for receive own message, 3 is for receive own message once.
SendType is effective only when the frame is a received frame. (For EG20T-CAN device,
the transmission mode is set in VCI_InitCan function. In this case, the setting on here is
invalid. For receive own message setting, G20T-CAN will not receive any data from the
bus, but only receive the data send by itself.)

RemoteFlag

This is used to indicate whether the frame is a remote frame.

ExternFlag

This is used to indicate whether the frame is an extend frame.

DataLen

Data length (<=8)

Data

Data in the message

Reserved

System reserved item

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

11

2.3.3 VCI_CAN_STATUS

2.3.3.1 Description

VCI_CAN_STATUS structure contains CAN controller status information. This structure
will be filled within VCI_ReadCanStatus function.

typedef struct _VCI_CAN_STATUS {

 UCHAR ErrInterrupt;

 UCHAR regMode;

 UCHAR regStatus;

 UCHAR regALCapture;

 UCHAR regECCapture;

 UCHAR regEWLimit;

 UCHAR regRECounter;

 UCHAR regTECounter;

 DWORD Reserved;

} VCI_CAN_STATUS, *PVCI_CAN_STATUS;

2.3.3.2 Member

ErrInterrupt

This is the interrupt logging. It is cleared by reading.

regMode

CAN controller mode register

regStatus

CAN controller status register

regALCapture

CAN controller arbitration lost register

regECCapture

CAN controller error register

regEWLimit

CAN controller error warning limit register

regRECounter

CAN controller receive error register

regTECounter

CAN controller transmit error register

Reserved

System reserved item

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

12

2.3.4 VCI_ERR_INFO

2.3.4.1 Description

VCI_ERR_INFO structure is used to load the VCI library running error information. This
structure will be filled within VCI_ReadErrInfo function.

typedef struct _ERR_INFO {

 UINT ErrCode;

 BYTE Passive_ErrData[3];

 BYTE ArLost_ErrData;

} VCI_ERR_INFO, *PVCI_ERR_INFO;

2.3.4.2 Member

ErrCode

Error code (Refer to the definition of error code in the Section 2.2 of Chapter 2)

Passive_ErrData

When passive error occurs, it indicates the error marking data of passive error.

ArLost_ErrData

When arbitration lost error occurs, it indicates the error marking data of arbitration lost
error.

2.3.5 VCI_INIT_CONFIG

2.3.5.1 Description

VCI_INIT_CONFIG structure defines the configuration for CAN initialization. This
structure will be filled within VCI_InitCan function.

typedef struct _INIT_CONFIG {

 DWORD AccCode;

 DWORD AccMask;

 DWORD Reserved;

 UCHAR Filter;

 UCHAR Timing0;

 UCHAR Timing1;

 UCHAR Mode;

} VCI_INIT_CONFIG, *PVCI_INIT_CONFIG;

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

13

2.3.5.2 Member

AccCode

This is the verification code.

AccMask

This is the mask code.

Reserved

System reserved

Filter

This is the filter mode

Timing0

This is the Timer 0 (BTR0)

Timing1

This is the Timer 1 (BTR1)

Mode

This is the mode.

2.3.5.3 Remark

This structure is described in detailed in Table 2-3.

Timing0 and Timing1 are used to set the CAN baudrate. The tabel below lists the
common baud rate settings.

CAN baud rate Timer 0 Timer 1

5Kbps 0xBF 0xFF

10Kbps 0x31 0x1C

20Kbps 0x18 0x1C

40Kbps 0x87 0xFF

50Kbps 0x09 0x1C

80Kbps 0x83 0Xff

100Kbps 0x04 0x1C

125Kbps 0x03 0x1C

200Kbps 0x81 0xFA

250Kbps 0x01 0x1C

400Kbps 0x80 0xFA

500Kbps 0x00 0x1C

666Kbps 0x80 0xB6

800Kbps 0x00 0x16

1000Kbps 0x00 0x14

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

14

Notice: For PCI-5010-U/PCI-5020-U/USBCAN-E-U/USBCAN-2E-U device, the Baud
rate is not set in this structure. It should be set by VCI_SetReference function before
VCI_InitCan function is called. For more information, please refer to VCI_SetReference.

2.3.6 CHGDESIPANDPORT

2.3.6.1 Description

CHGDESIPANDPORT structure is used to load the necessary information of the target
IP and port for changing CANET-E. This structure is applied in CANETE-E.

typedef struct _tagChgDesIPAndPort {

 char szpwd[10];

 char szdesip[20];

 int desport;

 BYTE blisten;

} CHGDESIPANDPORT;

2.3.6.2 Member

szpwd[10]

This is the password for changing target IP and port. The length should be less than 10,
such as “11223344”.

szdesip[20]

This is the target IP to be changed, such as “192.168.0.111”.

desport

This is the target port to be changed, such as “4000”.

blisten

This is the operation mode to be changed, 0 for normal mode and 1 for listen only
mode.

2.3.7 VCI_FILTER_RECORD

2.3.7.1 Description

VCI_FILTER_RECORD structure defines the filtering range of the CAN filter. This
structure will be filled within VCI_SetReference function.

typedef struct _VCI_FILTER_RECORD{

 DWORD ExtFrame;

 DWORD Start;

 DWORD End;

} VCI_FILTER_RECORD,*PVCI_FILTER_RECORD;

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

15

2.3.7.2 Member

ExtFrame

This is the frame type flag for filtering, 1 for extend frame and 0 for standard frame.

Start

This is the ID of start frame in the filtering range.

End

This is the ID of end frame in the filtering range.

2.4 Interface library function specification

2.4.1 VCI_OpenDevice

2.4.1.1 Description

This function is used to open device.

DWORD __stdcall VCI_OpenDevice(DWORD DevType, DWORD DevIndex, DWORD Reserved);

2.4.1.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

Reserved

For CAN232, this parameter is used to indicate the baud rate for the serial port. It can
be 2400, 4800, 9600, 14400, 19200, 28800 or 57600. For CANET-UDP, this parameter
indicates the local port number to be open. The range of it can be from 5000 to 40000.
For CANET-TCP, this parameter is fixed with 0. However, for other devices, this
parameter is invalid.

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.1.3 Example

#include "ControlCan.h"

int nDeviceType = 6; /* CAN232 */

int nDeviceInd = 0; /* COM1 */

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

16

int nReserved = 9600; /* Baud rate */

DWORD dwRel;

dwRel = VCI_OpenDevice(nDeviceType, nDeviceInd, nReserved);

if (dwRel != STATUS_OK)

{

 MessageBox(_T("Open device fails!"), _T("Warning"), MB_OK|MB_ICONQUESTION);

 return FALSE;

}

2.4.2 VCI_CloseDevice

2.4.2.1 Description

This function is used to close device.

DWORD __stdcall VCI_CloseDevice(DWORD DevType, DWORD DevIndex);

2.4.2.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.2.3 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

BOOL bRel;

bRel = VCI_CloseDevice(nDeviceType, nDeviceInd);

2.4.3 VCI_InitCan

2.4.3.1 Description

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

17

This function is used to initialize the specific CAN channel. (For USBCAN-E-U or
USBCAN-2E-U, the baud rate should be set by VCI_SetReference function before
VCI_InitCan function is called)

DWORD __stdcall VCI_InitCan(DWORD DevType, DWORD DevIndex, DWORD CANIndex,

PVCI_INIT_CONFIG pInitConfig);

2.4.3.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

pInitConfig

It is used to initialize parameter structure. (Notes: 1. For CAN232, this parameter should
beset to NULL; 2. For PCI-5010-U/PCI-5020-U/USBCAN-E-U/USBCAN-2E-U, the
settings about filtering and baud rate should be configured in VCI_SetReference. And
only Mode is needed to be set in pInitConfig, while other 6 member can be ignored. For
more detailed information, please refer to VCI_SetReference).

Table 2-3: Initial parameter structure

Member Description

pInitConfig->AccCode AccCode is corresponding to the 4 registers in SJA1000, they are

ACR0, ACR1, ACR2 and ACR3, in which the higher byte is

corresponding to ACR0, while the lower byte Is corresponding to

ACR3. AccMask is corresponding to the 4 registers in SJA1000, they

are AMR0, AMR1, AMR2 and AMR3 in which the higher byte is

corresponding to AMR0, while the lower byte Is corresponding to

AMR3 (For more information, please refer to the explanation below)

pInitConfig->AccMask

pInitConfig->Reserved Reserved

pInitConfig->Filter

Filter mode, 1 for single filtering, 0 for double filtering

(For EG20T-CAN, 0 means receive standard frame and extend

frame; 1 means only receive and filter standard frame, extend frame

is not received; 3 means only receive and filter extend frame,

standard frame is not received

pInitConfig->Timing0 Timer 0

pInitConfig->Timing1 Timer 1

pInitConfig->Mode
Mode, 0 for normal mode, and 1 for listen only mode

(For EG20T-CAN, the meaning of Mode is as following:

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

18

Bit0 is 0 for normal mode, and 1 for listen only mode (Silence mode);

Bit1 is 0 for normal mode, and 1 for receive own message mode

(Loop mode);

Bit2 is 0 for single transmission, and 1 for automatic resend mode

(Auto resend mode)

For receive own message setting, G20T-CAN will not receive any

data from the bus, but only receive the data send by itself.

For single filtering mode, when the received frame is set to be a standard frame:

RTR is corresponding to the RemoteFlag in VCI_CAN_OBJ:

For single filtering, when the received frame is set to be a extend frame:

For double filtering mode, when the received frame is set to be a standard frame:

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

19

For double filtering mode, when the received frame is set to be a extend frame:

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

20

Return value

When return 1, operation is successful; when return 0, operation is failure. (Notes: This
function is not exist in CANET, so it will return 1 when calling this function)

2.4.3.3 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

int nReserved = 9600; // Baudrate

VCI_INIT_CONFIG vic;

DWORD dwRel;

dwRel = VCI_OpenDevice(nDeviceType, nDeviceInd, nReserved);

if (dwRel != STATUS_OK)

{

 MessageBox(_T("Open device fails!"), _T("Warning"), MB_OK|MB_ICONQUESTION);

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

21

 return FALSE;

}

dwRel = VCI_InitCAN(nDeviceType, nDeviceInd, nCANInd, &vic);

if (dwRel == STATUS_ERR)

{

 VCI_CloseDevice(nDeviceType, nDeviceInd);

 MessageBox(_T("Initialize device fails!"), _T("Warning"), MB_OK|MB_ICONQUESTION);

 return FALSE;

}

2.4.4 VCI_ReadBoardInfo

2.4.4.1 Description

This function is used to obtain device information. (For EG20T-CAN, this function is not
supported)

DWORD __stdcall VCI_ReadBoardInfo(DWORD DevType, DWORD DevIndex, PVCI_BOARD_INFO pInfo);

2.4.4.2 Parameter

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

pInfo

This is a VCI_BOARD_INFO structure pointer for device information storage.

Return value

When return 1, operation is successful; when return 0, operation is failure. (Notes: This
function is not exist in CANET, so it will return 0 when calling this function, and error
code ERR_CMDFAILED will be return as well）

2.4.4.3 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

VCI_INIT_CONFIG vic;

VCI_BOARD_INFO vbi;

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

22

DWORD dwRel;

bRel = VCI_ReadBoardInfo(nDeviceType, nDeviceInd, nCANInd, &vbi);

2.4.5 VCI_ReadErrInfo

2.4.5.1 Description

This function is used to obtain the last error information (For EG20T-CAN, this function
is not supported)

DWORD __stdcall VCI_ReadErrInfo(DWORD DevType, DWORD DevIndex, DWORD CANIndex,

PVCI_ERR_INFO pErrInfo);

2.4.5.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel. (Notes: When reading device error, this
parameter should be set to -1. For example, if VCI_OpenDevice, VCI_CloseDevice or
VCI_ReadBoardInfo function call fails, when calling this function to obtain error code,
user should set CANIndex to -1 at first)

pErrInfo

This is the VCI_ERR_INFO structure pointer for error information storage.
pErrInfo->ErrCode may be any combination of the following error codes. (For other
errors, please refer to error code definition 2.2)

ErrCode Passive_ErrData ArLost_ErrData Description

0x0100 No No Device is open

0x0200 No No Open device fails

0x0400 No No Device is not open

0x0800 No No Buffer overflow

0x1000 No No This device is not exist

0x2000 No No Load dynamic library fails

0x4000 No No Execute command fails

0x8000 No Insufficient memory

0x0001 No No CAN controller internal

FIFO overflow

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

23

ErrCode Passive_ErrData ArLost_ErrData Description

0x0002 No No CAN controller error

warning

0x0004 Yes, for more information

please refer to the table

below

No CAN controller passive error

0x0008 No Yes, for more information

please refer to the table

below

CAN controller arbitration

lost

0x0010 No No CAN controller bus error

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.5.3 Remark

When (PErrInfo->ErrCode&0x0004)==0x0004, CAN controller passive error occurs.

The table below lists the bit interpretation of PErrInfo->Passive_ErrData[0] error code
capture bit.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Error code type Error

attribute

Error segment indication

Bit interpretation of bits ECC.7 and ECC.6

Bit ECC.7 Bit ECC.6 Function

0 0 Bit error

0 1 Format error

1 0 Stuff error

1 1 Other error

2.4.5.4 Error attribute

bit5 = 0: Error occurs on data sending.

 = 1: Error occurs on data receiving.

The table below lists the functions of different error segment values.

bit4 bit 3 bit 2 bit 1 bit 0 Function

0 0 0 1 1 start of frame

0 0 0 1 0 ID.28 to ID.21

0 0 1 1 0 ID.20 to ID.18

0 0 1 0 0 bit SRTR

0 0 1 0 1 bit IDE

0 0 1 1 1 ID.17 to ID.13

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

24

bit4 bit 3 bit 2 bit 1 bit 0 Function

0 1 1 1 1 ID.12 to ID.5

0 1 1 1 0 ID.4 to ID.0

0 1 1 0 0 bit RTR

0 1 1 0 1 reserved bit 1

0 1 0 0 1 reserved bit 0

0 1 0 1 1 data length code

0 1 0 1 0 data field

0 1 0 0 0 CRC sequence

1 1 0 0 0 CRC delimiter

1 1 0 0 1 acknowledge slot

1 1 0 1 1 acknowledge delimiter

1 1 0 1 0 end of frame

1 0 0 1 0 intermission

1 0 0 0 1 active error flag

1 0 1 1 0 passive error flag

1 0 0 1 1 tolerate dominant bits

1 0 1 1 1 error delimiter

1 1 1 0 0 overload flag

PErrInfo->Passive_ErrData[1] is for receive error counter

PErrInfo->Passive_ErrData[2] is for send error counter

When (PErrInfo->ErrCode&0x0008)==0x0008, CAN controller arbitration lost error
occurs.

For PErrInfo->ArLost_ErrData, bit interpretation of the error code capture register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

——— ——— ——— Error segment function value

Bit interpretation of the arbitration lost capture register is shown in the table below:

Bit
Decimal value Function

ALC.4 ALC.3 ALC.2 ALC.1 ALC.0

0 0 0 0 0 0 arbitration lost in bit 1 of identifier

0 0 0 0 1 1 arbitration lost in bit 2 of identifier

0 0 0 1 0 2 arbitration lost in bit 3 of identifier

0 0 0 1 1 3 arbitration lost in bit 4 of identifier

0 0 1 0 0 4 arbitration lost in bit 5 of identifier

0 0 1 0 1 5 arbitration lost in bit 6 of identifier

0 0 1 1 0 6 arbitration lost in bit 7 of identifier

0 0 1 1 1 7 arbitration lost in bit 8 of identifier

0 1 0 0 0 8 arbitration lost in bit 9 of identifier

0 1 0 0 1 9 arbitration lost in bit 10 of identifier

0 1 0 1 0 10 arbitration lost in bit 11 of identifier

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

25

Bit Decimal value Function

0 1 0 1 1 11 arbitration lost in bit SRTR

0 1 1 0 0 12 arbitration lost in bit IDE

0 1 1 0 1 13 arbitration lost in bit 12 of identifier

0 1 1 1 0 14 arbitration lost in bit 13 of identifier

0 1 1 1 1 15 arbitration lost in bit 14 of identifier

1 0 0 0 0 16 arbitration lost in bit 15 of identifier

1 0 0 0 1 17 arbitration lost in bit 16 of identifier

1 0 0 1 0 18 arbitration lost in bit 17 of identifier

1 0 0 1 1 19 arbitration lost in bit 18 of identifier

1 0 1 0 0 20 arbitration lost in bit 19 of identifier

1 0 1 0 1 21 arbitration lost in bit 20 of identifier

1 0 1 1 0 22 arbitration lost in bit 21 of identifier

1 0 1 1 1 23 arbitration lost in bit 22 of identifier

1 1 0 0 0 24 arbitration lost in bit 23 of identifier

1 1 0 0 1 25 arbitration lost in bit 24 of identifier

1 1 0 1 0 26 arbitration lost in bit 25 of identifier

1 1 0 1 1 27 arbitration lost in bit 26 of identifier

1 1 1 0 0 28 arbitration lost in bit 27 of identifier

1 1 1 0 1 29 arbitration lost in bit 28 of identifier

1 1 1 1 0 30 arbitration lost in bit 29 of identifier

1 1 1 1 1 31 arbitration lost in bit ERTR

2.4.5.5 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

VCI_ERR_INFO vei;

DWORD dwRel;

bRel = VCI_ReadErrInfo(nDeviceType, nDeviceInd, nCANInd, &vei);

2.4.6 VCI_ReadCanStatus

2.4.6.1 Description

This function is used to obtain CAN channel state.

DWORD __stdcall VCI_ReadCanStatus(DWORD DevType, DWORD DevIndex, DWORD CANIndex,

PVCI_CAN_STATUS pCANStatus);

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

26

2.4.6.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

pCANStatus

This is the VCI_CAN_STATUS structure pointer for CAN state storage.

Return value

When return 1, operation is successful; when return 0, operation is failure. (Notes: This
function is not exist in CANET, so it will return 0 when calling this function, and error
code ERR_CMDFAILED will be return as well）

2.4.6.3 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

VCI_INIT_CONFIG vic;

VCI_CAN_STATUS vcs;

DWORD dwRel;

bRel = VCI_ReadCANStatus(nDeviceType, nDeviceInd, nCANInd, &vcs);

2.4.7 VCI_GetReference

2.4.7.1 Description

This function is used to obtain the parameters of device.

DWORD __stdcall VCI_GetReference(DWORD DevType, DWORD DevIndex, DWORD CANIndex, DWORD

RefType, PVOID pData);

2.4.7.2 Parameters

DevType

This is the type of device.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

27

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

RefType

This is the type of the reference parameter.

pData

This is the buffer head pointer for parameter storage.

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.7.3 Remark

(1) For PCI5121, CI5110 or SA5420:

RefType pData Description

1 Length: 2 bytes

pData[0] is the control

register address of CAN

controller

pData[1] is the control

register value to be read in

the CAN controller

Read the value from the register in CAN chip

For example, reading a value from the offset address

09H in a register

UCHAR pData[2] = {9,0};

VCI_GetReference(DeviceType,DeviceInd,CANInd,1,p

Data);

For successful calling, the read out value will be stored

in pData[1]

(2) For USBCAN1 or USBCAN2:

RefType pData Description

1 Length: 1 byte

When it is used as an input

parameter, pData[0] is the

address of the control

register of CAN controller

to be read;

When it is used as an

output parameter, pData[0]

is the value of the control

register of CAN controller

Read the value from a specific control register of CAN

controller

Take USBCAN1 for example:

BYTE val=0;

VCI_GetReference(VCI_USBCAN1,0,0,1,(PVOID)&val

);

If this function is called successfully, register value will

be returned in the parameter val

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

28

(3) For WITCAN-I:

RefType pData Description

1 Length: 1 byte

When it is used as an input

parameter, pData[0] is the

address of the control

register of CAN controller

to be read;

When it is used as an

output parameter, pData[0]

is the value of the control

register of CAN controller

Read the value from a specific control register of CAN

controller

Take USBCAN1 for example:

BYTE val=0;

VCI_GetReference(VCI_USBCAN1,0,0,1,(PVOID)&val

);

If this function is called successfully, register value will

be returned in val

20 Length: the data length + 4

bytes;

When it is used as an input

parameter, byte 0 and byte

1 are the address of the

data, and byte 2 and byte 3

are the length of the data.

When it is used as an

output parameter, it stores

the data to be read

Read the data from EEPROM

For example:

BYTE buf[12];

WORD addr=0,readlen=8;

memcpy(buf,&addr,2);// set the address

memcpy(buf+2,&readlen,2);// set the length to be read

VCI_GetReference(VCI_USBCAN1,0,0,20,(PVOID)&b

uf);

If this function is called successfully, the data being

read will be stored in the byte 0~byte 7 of the parameter

buf

(4) For CANET-UDP:

RefType pData Description

0 Character string head

pointer; it is used to store

the IP address read out

from the CANETE-E

Read IP address from CANET-E

For example:

char szip[20];

VCI_GetReference(VCI_CANETE,0,0,0,(PVOID)szip);

If this function is called successfully, CANET-E address

will be returned in szip

1 Length: 4 bytes; it is used

to the CANET-E operation

port to be read out

Read CANET-E operation port

For example:

int port;

VCI_GetReference(VCI_CANETE,0,0,1,(PVOID)&port);

If this function is called successfully, the CANET-E

operation port will be returned in the parameter port

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

29

(5) For CANET-TCP:

This device has two operation modes; they are Client mode and Server mode. When
the device is working at Client mode, the test tool should be set to Server mode, and
vice versa.

RefType pData Description

0 Character string head

pointer; it is used to

store the IP address

read out from the

CANETE-E

Read IP address from CANET-E

For example:

char szip[20];

VCI_GetReference(VCI_CANETE,0,0,0,(PVOID)szip);

If this function is called successfully, CANET-E address

will be returned in szip

1 Length: 4 bytes; it is

used to the CANET-E

operation port to be

read out

Read CANET-E operation port

For example:

int port;

VCI_GetReference(VCI_CANETE,0,0,1,(PVOID)&port);

If this function is called successfully, the CANET-E

operation port will be returned in the parameter port

2 Length: 4 bytes; it is

used to store the TCP

server port to be read

out (server mode and

client mode are both

available)

Read or set TCP server port

For example:

int port;

VCI_SetReference(VCI_CANET_TCP,0,0,2,(PVOID)&port);

If this function is called successfully, the operation port in

the device will be set

4 Length: 4 bytes; it is

the operation mode of

TCP device

0 is for Client mode, and 1 is for Server mode

For example:

int iType = 1;

VCI_SetReference(VCI_CANET_TCP,0,0,4,(PVOID)&iTyp

e);

If this function is called successfully, device will be set to

work at Server mode

5 Length: 4 bytes; it is

used to obtain the

number of the

connected Client (it is

available only when

device is under Client

mode）

Read or set TCP server port

For example:

int iCount;

VCI_GetReference(VCI_CANET_TCP,0,0,5,(PVOID)&iCo

unt);

If this function is called successfully, the CANET-E

operation port will be returned in the parameter port

6 It should be used with

REMOTE_CLIENT

structure to obtain the

connection information

(it is available only

when device is under

When server (local device) is connected with a client, this

command can be used to obtain client port information.

For example:

REMOTE_CLIENT cli;

cli.iIndex = 0; //Get the client port 0 in the server

VCI_GetReference(VCI_CANET_TCP ,0, 0,6,(PVOID)&cli);

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

30

RefType pData Description

Client mode） If this function is called successfully, the Client information

will be return in the parameter cli

REMOTE_CLIENT structure

 typedef struct tagRemoteClient{

 int iIndex;

 DWORD port;

 HANDLE hClient;

 char szip[32];

}REMOTE_CLIENT;

(6) For CAN232:

RefType pData Description

1 Length: 14 bytes;

When it is used as an input

parameter, only the 1st byte

is valid, it indicates the

serial number of the filter to

be read, and the valid value

of it is 1, 2, 3 or 4

When it is used as an

output parameter, please

refer to the tables below for

the meanings of each byte

Get the specific filter parameter. For example, to read

the parameter of the first filter, the setting is as

following:

BYTE info[14];

info[0]=1;

VCI_GetReference(VCI_CAN232,0,0,1,(PVOID)info);

If this function is called successfully, the parameter of

the first filter in 14 bytes will be returned in info.

2 Length: 1 byte

When it is used as an input

parameter, pData[0] is the

address of the control

register of CAN controller

to be read;

When it is used as an

output parameter, pData[0]

is the value of the control

register of CAN controller

Read the value from a specific control register of CAN

controller

For example:

BYTE val=0;

VCI_GetReference(VCI_CAN232,0,0,2,(PVOID)&val);

If this function is called successfully, register value will

be returned in val

When RefType=1, the meanings of each byte in the returned pData are as following:

pData[0] is for reserved

pData[1] is for the value of CAN controller BTR0;

pData[2] is for the value of CAN controller BTR1;

pData[3] is for reading the operation mode of acceptance filter; its bit interpretation is
listed as below:

STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0

——— MFORMATB AMODEB

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

31

MFORMATB =1; acceptance filter is only available for extend frame information; the
standard frame information will be ignored.

 =0; acceptance filter is only available for standard frame information;
the extend frame information will be ignored.

AMODEB =1; single acceptance filter option is enabled.

 =0; double acceptance filter option is enabled.

pData[4] is for reading the state of acceptance filter (enabled or not); its bit interpretation
is listed as below:

STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0

——— BF2EN BF1EN

BF2EN =1; filter 2 is enabled, and writing shield and code registers are not allowed;

 =0; filter 2 is disabled, and shield and code registers can be written.

BF1EN =1; filter 1 is enabled, and writing shield and code registers are not allowed;
 =0; filter 1 is disabled, and shield and code registers can be written.

Notes: For single filter mode, the single filter is related to the filter 1 enable bit. And filter 2 enable bit

is ineffective under this mode.

pData[5] is for reading the priory level of acceptance filter (enabled or not); its bit
interpretation is listed as below:

STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0

——— BF2PRIO BF1PRIO

BF2PRIO =1; Filter 2 has higher priory level. If there is message come into filer 2,
receive interrupt will be generated immediately;

 =0；Filter 2 has lower priory level. When FIFO level has passed the receive
interrupt level, receive interrupt will be generated;

BF1PRIO =1; Filter 1 has higher priory level. If there is message come into filer 2,
receive interrupt will be generated immediately;

=0； Filter 1 has lower priory level. When FIFO level has passed the receive
interrupt level, receive interrupt will be generated.

pData[6—9] is for the ACR value of this filter;

pData[a—d] is for the AMR value of this filter.

2.4.7.4 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

BYTE info[14];

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

32

DWORD dwRel;

info[0] = 1;

bRel = VCI_GetReference(nDeviceType, nDeviceInd, nCANInd, 1, (PVOID)info);

2.4.8 VCI_SetReference

2.4.8.1 Description

This function is used to set the parameters of the device, to handle different specific
operations of the device.

DWORD __stdcall VCI_SetReference(DWORD DevType, DWORD DevIndex, DWORD CANIndex, DWORD

RefType, PVOID pData);

2.4.8.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

RefType

This is the type of the reference parameter.

pData

This is the buffer head pointer for parameter storage.

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.8.3 Remark

VCI_SetReference and VCI_GetReference functions are used for specific operations,
such as modifying the baud rate of CAN232 or setting message filter. The meaning of
the PVOID type parameter pData is depended on operation.

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

33

(1) For PCI5121, PCI5110 or ISA5420:

RefType pData Description

1 Length: 2 bytes

pData[0] is the control

register address of CAN

controller

pData[1] is the control

register value to be written

Write the value into the specific register in CAN chip

(2) For USBCAN1 or USBCAN2:

RefType pData Description

1 Length: 2 bytes

pData[0] is the control

register address of CAN

controller

pData[1] is the control

register value to be written

Write the value into the specific register in CAN chip

(3) For WITCAN-I:

RefType pData Description

1 Length: 2 bytes

pData[0] is the control

register address of CAN

controller

pData[1] is the control

register value to be written

Write the value into the specific register in CAN chip

20 Length: the data length + 4

bytes;

When it is used as an input

parameter, byte 0 and byte

1 are the address of the

data, and byte 2 and byte 3

are the length of the data.

Byte 4 and the remain

bytes are used to store the

data to be wrritten

Write data into EEPROM

For example:

BYTE buf[12];

WORD addr=0,writelen=8;

memcpy(buf,&addr,2);//set the address

memcpy(buf+2,& writelen,2);//set the length to be

written

memset(buf+4,0,8);//set the data to be written

VCI_SetReference(VCI_USBCAN1,0,0,20,(PVOID)&bu

f);

(4) For CANET-UDP:

RefType pData Description

0 Character string head

pointer; it is used to store

the IP address read out

from the CANETE-UDP

Set the IP address of CANET-UDP to be operated

1 Length: 4 bytes; it is used Set the working port of CANET-UDP to be operated

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

34

RefType pData Description

to the CANET-UDP

operation port to be read

out

DWORD port=5000;

VCI_SetReference(12,0,0,1,(PVOID)&port);

(5) For CANET-TCP:

RefType pData Description

0 Character string head

pointer; it is used to store

the IP address of the

CANETE-TCP

Set the IP address of CANET-TCP to be operated

1 Length: 4 bytes; it is used

to store the CANET- TCP

operation port (Target)

Set the working port of CANET-TCP to be operated

2 Length: 4 bytes; it is used

to store the operation port

on local device

Set the operation port of local device

4 Length: 4 bytes; it is used

to store the operation

mode of TCP device

Set the operation mode of local device, if CANET－

TCP is working at Server mode, the local device should

be work at Client mode; if CANET-TCP is working at

Client mode, the local device should be work at Server

mode. 0 is for Client mode, and 1 is for Server mode

5 Length: 4 bytes; it is used

to store the number of the

Client connected to the

local Server

It is read only.

6 Length:

REMOTE_CLIENT, it is

used to store the

connection information

It is read only.

7 It should be used with

REMOTE_CLIENT

structure to delete a

connection (it is available

only when device is under

Client mode）

For example:

REMOTE_CLIENT cli;

cli.iIndex = 0; // delete the connection of Client 0

VCI_SetReference(VCI_CANET_TCP,0,0,7,(PVOID)&c

li);

REMOTE_CLIENT structure

 typedef struct tagRemoteClient{

 int iIndex;

 DWORD port;

 HANDLE hClient;

 char szip[32];

}REMOTE_CLIENT;

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

35

(6) For CAN232:

RefType pData Description

1 Length: 1 byte

＝0； 10Kbps

＝1； 20Kbps

＝2； 50Kbps

＝3； 125Kbps

＝4； 250Kbps

＝5； 500Kbps

＝6； 800Kbps

＝7； 1000Kbps

Modify the CAN baud rate, for example, set the CAN

baud rate to 10Kbps:

BYTE baud=0;

VCI_SetReference(VCI_CAN232,0,0,1,(PVOID)&baud)

;

2 Length: 12 bytes, for more

information please refer the

table below

Set the filter parameter

3 Length: 1 byte

＝1； 2.4Kbps

＝2； 4.8Kbps

＝3； 9.6Kbps

＝4； 14.4Kbps

＝5； 19.2Kbps

＝6； 28.8Kbps

＝7； 57.6Kbps

Modify serial port baud rate

4 Length: 2 bytes

pData[0] is the control

register address of CAN

controller

pData[1] is the control

register value to be written

Write the value into the specific register in CAN chip

5 Length: 1 byte,

＝ 0xAA; use timestamp

＝ others; do not use

timestamp

Set timestamp

When RefType=2, the meanings of each byte in the returned pData are as following:

pData[0] is used to set the which group of acceptant filter to be used, there are 4 group
of filters:

=1: Set the 1st group

=2: Set the 2nd group

=3: Set the 3rd group

=4: Set the 4th group

pData[1] is used to set the operation mode of the acceptant filter; its bit interpretation is
listed as below:

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

36

STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0

——— MFORMATB AMODEB

MFORMATB =1; acceptance filter is only available for extend frame information; the
standard frame information will be ignored.

 =0; acceptance filter is only available for standard frame information;
the extend frame information will be ignored.

AMODEB =1; single acceptance filter option is enabled.

 =0; double acceptance filter option is enabled.

pData[2] is for reading the state of acceptance filter (enabled or not); its bit interpretation
is listed as below:

STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0

——— BF2EN BF1EN

BF2EN =1; filter 2 is enabled, and writing shield and code registers are not allowed;

 =0; filter 2 is disabled, and shield and code registers can be written.

BF1EN =1; filter 1 is enabled, and writing shield and code registers are not allowed;
 =0; filter 1 is disabled, and shield and code registers can be written.

Notes: For single filter mode, the single filter is related to the filter 1 enable bit. And filter 2 enable bit

is ineffective under this mode.

pData[3] is for reading the priory level of acceptance filter (enabled or not); its bit
interpretation is listed as below:

STATUS.7 STATUS.6 STATUS.5 STATUS.4 STATUS.3 STATUS.2 STATUS.1 STATUS.0

——— BF2PRIO BF1PRIO

BF2PRIO =1; Filter 2 has higher priory level. If there is message come into filer 2,
receive interrupt will be generated immediately;

 =0; Filter 2 has lower priory level. When FIFO level has passed the receive
interrupt level, receive interrupt will be generated;

BF1PRIO =1; Filter 1 has higher priory level. If there is message come into filer 2,
receive interrupt will be generated immediately;

=0; Filter 1 has lower priory level. When FIFO level has passed the receive
interrupt level, receive interrupt will be generated.

pData[4---7] are corresponding to ACR0---ACR3 of SJA1000 to be set;

pData[8---b] are corresponding to AMR0---AMR3 of SJA1000 to be set.

(7) For PCI-5010-U/PCI-5020-U/USBCAN-E-U/ USBCAN-2E-U:

RefType pData Description

0 Pointer to DWORD type data , this

DWORD variable value is the

value written into the baud rate

register BTR

Set baud rate. The calculation formulate is as

following:

BPS= Peripheral bus clock

/(BRP+1)*(TESG1+TESG2+3)

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

37

RefType pData Description

The relationship between some

standard baud rate and BTR

setting:

0x060003 ： 1000Kbps

0x060004 ： 800Kbps

0x060007 ： 500Kbps

0x1C0008 ： 250Kbps

0x1C0011 ： 125Kbps

0x160023 ： 100Kbps

0x1C002C ： 50Kbps

0x1600B3 ： 20Kbps

0x1C00E0 ： 10Kbps

0x1C01C1 ： 5Kbps

Where:

Peripheral bus clock: 36000Kbps

BRP: 0~9bit of BTR

TESG1: 16~19bit of BTR

TESG2: 20~22bit of BTR

The condition below is recommended to follow

when setting TESG1 or TESG2:

80% <=
321

21
++

+
TESGTESG

TESG
 <= 90%

For other values, SBCAN-E-U/USBCAN-2E-U

may work improperly.

It is recommended to set the remained bits of

32-bit register BTR to 0.

(Notice: The maximum baud rate of CAN

network should not exceed 1000Kbps, so the

baud rate setting should be lower than this value,

otherwise settings may fail.)

For USBCAN-E-U/ USBCAN-2E-U, it is

necessary to call this function to set the baud

rate before calling VCI_InitCan

1 Pointer to VCI_FILTER_RECORD

structure

Stuff the filter table of CAN filer (This function is

called for each time adding a new record)

2 NULL Start filer according to the settings in the filter

table

3 Pointer to DWORD type data , this

DWORD variable value is the

transmission overtime, unit: ms

Set the transmission overtime, unit: ms. If the

configuration is set without calling this function,

then the transmission overtime is 4000ms by

default. It is recommended the transmission over

should be less than 1500ms, or else CAM bus

communication may occur error.

2.4.8.4 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

BYTE baud;

DWORD dwRel;

baud = 0;

bRel = VCI_SetReference(nDeviceType, nDeviceInd, nCANInd, 1, (PVOID)baud);

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

38

2.4.9 VCI_GetReceiveNum

2.4.9.1 Description

This function is used to obtain the quantity of frames that has been received but not
read out.

ULONG __stdcall VCI_GetReceiveNum(DWORD DevType, DWORD DevIndex, DWORD CANIndex);

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

Return value

Return the frame number that is not read.

2.4.9.2 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

DWORD dwRel;

bRel = VCI_GetReceiveNum(nDeviceType, nDeviceInd, nCANInd);

2.4.10 VCI_ClearBuffer

2.4.10.1 Description

This function is used to clear the specific buffer.

DWORD __stdcall VCI_ClearBuffer(DWORD DevType, DWORD DevIndex, DWORD CANIndex);

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

39

CANIndex

This is the index number of CAN channel.

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.10.2 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

DWORD dwRel;

bRel = VCI_ClearBuffer(nDeviceType, nDeviceInd, nCANInd);

2.4.11 VCI_StartCAN

2.4.11.1 Description

This function is used to start CAN.

DWORD __stdcall VCI_StartCAN(DWORD DevType, DWORD DevIndex, DWORD CANIndex);

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

Return value

When return 1, operation is successful; when return 0, operation is failure.

2.4.11.2 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

int nReserved = 9600; // Baudrate

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

40

VCI_INIT_CONFIG vic;

DWORD dwRel;

dwRel = VCI_OpenDevice(nDeviceType, nDeviceInd, nReserved);

if (dwRel != STATUS_OK)

{

 MessageBox(_T("Open device fails!"), _T("Warning"), MB_OK|MB_ICONQUESTION);

 return FALSE;

}

dwRel = VCI_InitCAN(nDeviceType, nDeviceInd, nCANInd, &vic);

if (dwRel == STATUS_ERR)

{

 VCI_CloseDevice(nDeviceType, nDeviceInd);

 MessageBox(_T("Initialize device fail!"), _T("Warning"), MB_OK|MB_ICONQUESTION);

 return FALSE;

}

dwRel = VCI_StartCAN(nDeviceType, nDeviceInd, nCANInd);

if (dwRel == STATUS_ERR)

{

 VCI_CloseDevice(nDeviceType, nDeviceInd);

 MessageBox(_T("Start device fail!"), _T("Warning"), MB_OK|MB_ICONQUESTION);

 return FALSE;

}

2.4.12 VCI_ResetCAN

2.4.12.1 Description

This function is used to reset CAN.

DWORD __stdcall VCI_ResetCAN(DWORD DevType, DWORD DevIndex, DWORD CANIndex);

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

Return value

When return 1, operation is successful; when return 0, operation is failure.

(Notes: For CANET-TCP, in the case of network disconnection, user should recall
VCI_StartCAN function to use CANET-TCP connect to the network.)

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

41

2.4.12.2 Example

#include "ControlCan.h"

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

DWORD dwRel;

bRel = VCI_ResetCAN(nDeviceType, nDeviceInd, nCANInd);

2.4.13 VCI_Transmit

2.4.13.1 Description

Return the actual transmitted frame number.

ULONG __stdcall VCI_Transmit(DWORD DevType, DWORD DevIndex, DWORD CANIndex,

PVCI_CAN_OBJ pSend, ULONG Len);

2.4.13.2 Parameters

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

pSend

This is the head pointer to the data frame array to be sent.

Len

This is the length of the data frame array to be sent.

Return value

Return the actual transmitted frame number.

2.4.13.3 Example

#include "ControlCan.h"

#include <string.h>

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

42

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

DWORD dwRel;

VCI_CAN_OBJ vco;

ZeroMemory(&vco, sizeof (VCI_CAN_OBJ));

vco.ID = 0x00000000;

vco.SendType = 0;

vco.RemoteFlag = 0;

vco.ExternFlag = 0;

vco.DataLen = 8;

lRet = VCI_Transmit(nDeviceType, nDeviceInd, nCANInd, &vco, i);

2.4.14 VCI_Receive

2.4.14.1 Description

This function is used to read data from the specific device.

ULONG __stdcall VCI_Receive(DWORD DevType, DWORD DevIndex, DWORD CANIndex, PVCI_CAN_OBJ

pReceive, ULONG Len, INT WaitTime=－1);

DevType

This is the type of device.

DevIndex

This is the index number of device. For example, when there is only one PCI5121, the
index number is 0. For two devices, the index number can be 0 or 1. (Notice: For
CAN232, 0 is for opening COM1, and 1 is for opening COM2.)

CANIndex

This is the index number of CAN channel.

pReceive

This is used to receive the head pointer of the data frame array.

Len

This is the length of the data frame array to be received.

WaitTime

This is the wait overtime (unit: ms);

Return value

Return the frame number read actually. If the return value is 0xFFFFFFFF, it means
reading data fails and error occurs. In this case, you should call VCI_ReadErrInfo
function to obtain the error code.

2.4.14.2 Example

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

43

#include "ControlCan.h"

#include <string.h>

int nDeviceType = 6; // CAN232

int nDeviceInd = 0; // COM1

int nCANInd = 0;

DWORD dwRel;

VCI_CAN_OBJ vco[100];

lRet = VCI_Receive(nDeviceType, nDeviceInd, nCANInd, vco, 100, 400);

2.5 Interface library function usage

Firstly, put the library function file into the relevant directory. There are three files:
ControlCAN.h, ControlCAN.lib and ControlCAN.dll and one folder kerneldlls.

2.5.1 Calling dynamic library with VC

Contain ControlCAN.h head file in the file with the extension .CPP.

For example: #include “ControlCAN.h”

Connect with the ControlCAN.lib file by setting the connector in the project.

For example: under VC7, enter the configuration property→Connector→ Input→
Additional item in project property page, to add ControlCAN.lib.

2.5.2 Calling dynamic library with VB

The library can be called by declaring with the method below:

Syntax:

[Public | Private] Declare Function name Lib "libname" [Alias "aliasname"] [([arglist])]
[As type]

The syntax of the Declare statement is as following:

Public (optional)

It is used to declare the function that can be use in all the procedures for all modules.

Private (optional)

It is used to declare the function that can only be use in module under this declaration.

Name (optional)

It can be any legal function name. The dynamic link library entry (entry points) is case
sensitive.

Libname (optional)

It contains the function link library name or code resource name declared.

Alias (optional)

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

44

It means the called function has another name in the dynamic link library (DLL). When
the external function name is the same with certain function name, this parameter can
be used. When the function in the dynamic link library has the same name with the
name of public variable, constant or any procedure, you can use Alias too. If a character
in this DLL function has confliction with the naming convention of the dynamic link
library, Alias will be used.

Aliasname (optional)

It is dynamic link library. If the first character is not “#”, then aliasname will be the name
of the entry point in this function. If the first character is a “#”, the subsequent character
should specific the sequence number of the function entry.

Arglist (optional)

It is the variable table for passing parameter when calling this function.

Type (optional)

It is the data type of the Function return value. It can be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not supported in current), Date, String (only support
varchar) or Variant, user defined type or object type.

The syntax of the parameter arglist is as following:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type]

Partial description:

Optional (optional)

It means the parameter is not necessary. When using this option, the subsequent
parameters in arglist are optional too, and all of them should use the key work Optional
for declaration. However, if ParamArray is used, no parameter can be Optional.

ByVal (optional)

It means the parameter is passed by value.

ByRef (optional)

It means the parameter is passed by address.

For example:

Public Declare Function VCI_OpenDevice Lib "ControlCAN" (ByVal devicetype As Long,
ByVal deviceind As Long, ByVal reserved As Long) As Long

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

45

2.6 Interface library function usage flow

VCI_OpenDevice

VCI_ReadBoardInf

VCI_ReadErrInfo VCI_ReadCanStatu

VCI_GetReceiveN

VCI_ClearBuffer

VCI_GetReference VCI_SetReference

VCI_CloseDevice

VCI_StartCAN

VCI_ResetCAN

VCI_Transmit VCI_Receive

VCI_InitCan

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

46

CChhaapptteerr 33:: DDyynnaammiicc LLiibbrraarryy UUssaaggee iinn LLiinnuuxx

3.1 Driver installation

All the drivers have been tested under Linux 2.4.20-8.

3.1.1 USBCAN driver installation

Copy the usbcan.o file from the directory driver to /lib/modules/(*)/kernel/drivers/usb,
then the driver installation is completed, in which (*) is vary with the Linux version. For
example, if Linux version is 2.4.20-8, the name of this directory will be “2.4.20-8” too,
that is the same with the Linux core version number).

3.1.2 PCI5121 driver installation

Copy the pci51xx.o file from the directory driver to /lib/modules/(*)/kernel/drivers/char,
then the driver installation is completed, in which (*) is vary with the Linux version. For
example, if Linux version is 2.4.20-8, the name of this directory will be “2.4.20-8” too,
that is the same with the Linux core version number).

3.2 Dynamic library installation

Copy libcontrolcan.so file in the dll folder and kerneldlls folder to directory /lib, and then
run the command ldconfig /lib to finish the dynamic library installation.

3.3 Call and compile dynamic library

It is very easy to call dynamic library. Copy controlcan.h file in the dll folder to the
current project directory, and then contain controlcan.h file to your source code by using
#include “controlcan.h”. Now the functions in the dynamic library can be used.

For GCC compiling, you just need to add the option –lcontrolcan.

For example:

gcc –lcontrolcan –g –o test test.c

CAN-bus Series

Guangzhou ZHIYUAN Electronics Stock Co., Ltd.
 Common test software and interface funcation library

©2012 Guangzhou ZLGMCU Technology Date: 2012/12/19
User Manual V1.02

47

CChhaapptteerr 44:: RRiigghhttss && SSttaatteemmeennttss

This document only provides the information about the product of Guangzhou
ZHIYUAN Electronics Stock Co., Ltd. (ZHIYUAN Electronics) This document will not
(explicitly, implicitly or otherwise) license any intellectual property rights. ZHIYUAN
Electronics shall not be liable for any responsibilities other than those specified explicitly
in its sales terms and conditions. To the maximum extent permitted by law, ZHIYUAN
Electronics shall in no event be liable for or guarantee (explicitly, implicitly or otherwise)
the correctness, completeness, accuracy, durability, assurance of features, reliability,
workability, merchantability, quality, fitness for a particular purpose, achievement of
results, non-infringement of proprietary rights or the absence of any deficiencies of any
products sale by ZHIYUAN. The products of ZHIYUAN Electronics are not designed for
medical usage, life saving or life maintenance purpose. ZHIYUAN Electronics reserves
the right to change the product standard and specifications without prior notice.

Copyright © 2012， ZHIYUAN Electronics. All rights reserved

Company name： Guangzhou ZLGMCU Technology Co., Ltd.
Address: Floor 2, No.7 Building,

Huangzhou Industrial Estate
Guangzhou, CHINA

Post code: 510660
Website: www.zlgmcu.com
Sales: +86-20-2264-4249
Tech. Support: +86-20-2264-4361
Facsimile: +86-20-3860-1859
Sales Email: 80c51mcu@zlgmcu.com
Tech. Sup. Email: printer@zlgmcu.com

http://www.zlgmcu.com/�
mailto:80c51mcu@zlgmcu.com�
mailto:printer@zlgmcu.com�

	1 Chapter 1: Test Software Usage
	1.1 Device operation
	1.1.1 Select device type
	1.1.2 Filter setting
	1.1.3 Start CAN
	1.1.4 Obtain device information
	1.1.5 Data transmission

	1.2 Auxiliary operation
	1.2.1 Frame ID display mode
	1.2.2 Frame ID display format
	1.2.3 Continue to display sent and received data
	1.2.4 Pause to display sent and received data
	1.2.5 Roll
	1.2.6 Display frame number
	1.2.7 Language

	2 Chapter 2: Interface Function Library Usage
	2.1 Interface card device type definition
	2.2 Error code definition
	2.3 Function library data structure definition
	2.3.1 VCI_BOARD_INFO
	2.3.1.1 Description
	2.3.1.2 Member

	2.3.2 VCI_CAN_OBJ
	2.3.2.1 Description
	2.3.2.2 Member

	2.3.3 VCI_CAN_STATUS
	2.3.3.1 Description
	2.3.3.2 Member

	2.3.4 VCI_ERR_INFO
	2.3.4.1 Description
	2.3.4.2 Member

	2.3.5 VCI_INIT_CONFIG
	2.3.5.1 Description
	2.3.5.2 Member
	2.3.5.3 Remark

	2.3.6 CHGDESIPANDPORT
	2.3.6.1 Description
	2.3.6.2 Member

	2.3.7 VCI_FILTER_RECORD
	2.3.7.1 Description
	2.3.7.2 Member

	2.4 Interface library function specification
	2.4.1 VCI_OpenDevice
	2.4.1.1 Description
	2.4.1.2 Parameters
	2.4.1.3 Example

	2.4.2 VCI_CloseDevice
	2.4.2.1 Description
	2.4.2.2 Parameters
	2.4.2.3 Example

	2.4.3 VCI_InitCan
	2.4.3.1 Description
	2.4.3.2 Parameters
	2.4.3.3 Example

	2.4.4 VCI_ReadBoardInfo
	2.4.4.1 Description
	2.4.4.2 Parameter
	2.4.4.3 Example

	2.4.5 VCI_ReadErrInfo
	2.4.5.1 Description
	2.4.5.2 Parameters
	2.4.5.3 Remark
	2.4.5.4 Error attribute
	2.4.5.5 Example

	2.4.6 VCI_ReadCanStatus
	2.4.6.1 Description
	2.4.6.2 Parameters
	2.4.6.3 Example

	2.4.7 VCI_GetReference
	2.4.7.1 Description
	2.4.7.2 Parameters
	2.4.7.3 Remark
	2.4.7.4 Example

	2.4.8 VCI_SetReference
	2.4.8.1 Description
	2.4.8.2 Parameters
	2.4.8.3 Remark
	2.4.8.4 Example

	2.4.9 VCI_GetReceiveNum
	2.4.9.1 Description
	2.4.9.2 Example

	2.4.10 VCI_ClearBuffer
	2.4.10.1 Description
	2.4.10.2 Example

	2.4.11 VCI_StartCAN
	2.4.11.1 Description
	2.4.11.2 Example

	2.4.12 VCI_ResetCAN
	2.4.12.1 Description
	2.4.12.2 Example

	2.4.13 VCI_Transmit
	2.4.13.1 Description
	2.4.13.2 Parameters
	2.4.13.3 Example

	2.4.14 VCI_Receive
	2.4.14.1 Description
	2.4.14.2 Example

	2.5 Interface library function usage
	2.5.1 Calling dynamic library with VC
	2.5.2 Calling dynamic library with VB

	2.6 Interface library function usage flow

	3 Chapter 3: Dynamic Library Usage in Linux
	3.1 Driver installation
	3.1.1 USBCAN driver installation
	3.1.2 PCI5121 driver installation

	3.2 Dynamic library installation
	3.3 Call and compile dynamic library

	4 Chapter 4: Rights & Statements

