|
|
#include "feite_servo_motor.hpp"
#include <stdint.h>
#include <string.h>
// #include "board.h"
// #include "port.h"
using namespace iflytop; using namespace std; using namespace feite; #define TAG "FeiTeServoMotor"
#define OVERTIME 30
#define DO(func) \
if (!(func)) { \ ZLOGE(TAG, "motor[%d] do %s fail", id, #func); \ return false; \ }
static void dumphex(const char* tag, uint8_t* data, uint8_t len) { printf("%s:", tag); for (int i = 0; i < len; i++) { printf("%02x ", data[i]); } printf("\n"); } void FeiTeServoMotor::initialize(UART_HandleTypeDef* uart, DMA_HandleTypeDef* hdma_rx, DMA_HandleTypeDef* hdma_tx) { m_uart = uart; m_hdma_rx = hdma_rx; m_hdma_tx = hdma_tx; }
bool FeiTeServoMotor::ping(uint8_t id) { ping_cmd_t ping_cmd; ping_resp_t ping_resp; ping_cmd.header = 0xffff; ping_cmd.id = id; ping_cmd.len = 2; ping_cmd.cmd = kping; ping_cmd.checksum = checksum_packet((uint8_t*)&ping_cmd, sizeof(ping_cmd_t));
return tx_and_rx((uint8_t*)&ping_cmd, sizeof(ping_cmd_t), (uint8_t*)&ping_resp, sizeof(ping_resp_t), OVERTIME); }
static int16_t getcalibrate(int16_t nowpos, int16_t aftercalibratepos) { int16_t calibrate = nowpos - aftercalibratepos; while (true) { if (calibrate > 2047) { calibrate -= 4094; } else if (calibrate < -2047) { calibrate += 4094; } else { break; } } return calibrate; }
bool FeiTeServoMotor::setmode(uint8_t id, run_mode_e runmode) { return write_u8(id, kRegServoRunMode, (uint8_t)runmode); } bool FeiTeServoMotor::getServoCalibration(uint8_t id, int16_t& poscalibration) { return read_s16(id, kRegServoCalibration, 11, poscalibration); }
run_mode_e FeiTeServoMotor::getmode(uint8_t id) { uint8_t data = 0; bool suc = read_u8(id, kRegServoRunMode, data); if (suc) { return (run_mode_e)data; } else { return kMotorMode; } }
bool FeiTeServoMotor::getmode(uint8_t id, run_mode_e& runmode) { uint8_t data = 0; bool suc = read_u8(id, kRegServoRunMode, data); runmode = (run_mode_e)data; return suc; }
bool FeiTeServoMotor::setTorqueSwitch(uint8_t id, bool on) { return write_u8(id, kRegServoTorqueSwitch, on ? 1 : 0); } bool FeiTeServoMotor::getTorqueSwitch(uint8_t id, bool& on) { uint8_t data = 0; bool suc = read_u8(id, kRegServoTorqueSwitch, data); on = data; return suc; }
bool FeiTeServoMotor::getNowPos(uint8_t id, int16_t& pos) { return read_s16(id, kRegServoCurrentPos, 15, pos); } bool FeiTeServoMotor::setTargetPos(uint8_t id, int16_t pos) { return write_s16(id, kRegServoTargetPos, 15, pos); }
bool FeiTeServoMotor::triggerAysncWrite(uint8_t id) { cmd_header_t* cmd_header = (cmd_header_t*)m_txbuf; cmd_header->header = 0xffff; cmd_header->id = id; cmd_header->len = 2; cmd_header->cmd = 5; cmd_header->data[0] = checksum((uint8_t*)cmd_header, sizeof(cmd_header_t) + 1);
// HAL_UART_Transmit(m_uart, m_txbuf, sizeof(cmd_header_t) + 1, 1000);
return true; }
bool FeiTeServoMotor::rotate(uint8_t id, int16_t speed, uint16_t torque) { DO(setmode(id, kMotorMode)); if (torque == 0) torque = 1000; DO(write_u16(id, kRegServoTorqueLimit, torque)); DO(write_s16(id, kRegServoRunSpeed, 15, speed)); return true; }
bool FeiTeServoMotor::moveTo(uint8_t id, int16_t pos, int16_t speed, uint16_t torque) { /**
* @brief ����Ť�� */ DO(setmode(id, kServoMode)); if (torque == 0) torque = 1000; DO(write_u16(id, kRegServoTorqueLimit, torque)); DO(write_s16(id, kRegServoRunSpeed, 15, speed)); DO(setTargetPos(id, pos)); return true; } uint16_t abs16(int16_t val) { if (val < 0) { return -val; } else { return val; } } bool FeiTeServoMotor::moveWithTorque(uint8_t id, int16_t torque) { DO(setmode(id, kOpenMotorMode)); if (torque == 0) torque = 1000; DO(write_u16(id, kRegServoTorqueLimit, abs16(torque))); DO(write_s16(id, kRegServoRunTime, 15, torque)); return true; }
static int16_t tosign16(uint16_t* d, int signoff) { uint16_t sign = (*d >> signoff) & 0x01; uint16_t val = *d & (~(1 << signoff)); if (sign == 0) { return val; } else { return -val; } }
bool FeiTeServoMotor::read_status(uint8_t id, status_t* status) { // kRegServoCurrentPos
bool suc = read_reg(id, kRegServoCurrentPos, (uint8_t*)status, sizeof(status_t)); status->vel = tosign16((uint16_t*)&status->vel, 15); if (!suc) return false; return true; } bool FeiTeServoMotor::read_detailed_status(uint8_t id, detailed_status_t* detailed_status) { bool suc = read_reg(id, kRegServoCurrentPos, (uint8_t*)detailed_status, sizeof(*detailed_status)); if (!suc) return false; detailed_status->vel = tosign16((uint16_t*)&detailed_status->vel, 15); detailed_status->torque = tosign16((uint16_t*)&detailed_status->torque, 10);
return true; } void FeiTeServoMotor::dump_status(status_t* status) { ZLOGI(TAG, "===========status==========="); ZLOGI(TAG, "= status->pos :%d", status->pos); ZLOGI(TAG, "= status->vel :%d", status->vel); ZLOGI(TAG, "= status->torque :%d", status->torque); ZLOGI(TAG, "="); } #define BIT_IN_BYTE(byte, off) ((byte >> off) & 0x01)
void FeiTeServoMotor::dump_detailed_status(detailed_status_t* detailed_status) { ZLOGI(TAG, "===========detailed_status==========="); ZLOGI(TAG, "= detailed_status->pos :%d", detailed_status->pos); ZLOGI(TAG, "= detailed_status->vel :%d", detailed_status->vel); ZLOGI(TAG, "= detailed_status->torque :%d", detailed_status->torque); ZLOGI(TAG, "= detailed_status->voltage :%d", detailed_status->voltage); ZLOGI(TAG, "= detailed_status->temperature:%d", detailed_status->temperature); ZLOGI(TAG, "= detailed_status->state :%d:%d:%d:%d:%d:%d", BIT_IN_BYTE(detailed_status->state, 0), BIT_IN_BYTE(detailed_status->state, 1), BIT_IN_BYTE(detailed_status->state, 2), BIT_IN_BYTE(detailed_status->state, 3), BIT_IN_BYTE(detailed_status->state, 4), BIT_IN_BYTE(detailed_status->state, 5)); ZLOGI(TAG, "= detailed_status->moveflag :%d", detailed_status->moveflag); ZLOGI(TAG, "= detailed_status->current :%d", detailed_status->current); ZLOGI(TAG, "="); } bool FeiTeServoMotor::getMoveFlag(uint8_t id, uint8_t& moveflag) { return read_u8(id, kRegServoMoveFlag, moveflag); }
bool FeiTeServoMotor::reCalibration(int id, int16_t pos) { if (pos < 0 || pos > 4095) { ZLOGE(TAG, "reCalibration pos:%d out of range", pos); return false; } /**
* @brief �ر�Ť�ؿ��أ���ֹ�����˶� */ setTorqueSwitch(id, false); /**
* @brief ���õ�ǰģʽΪλ��ģʽ */ DO(setmode(id, kServoMode));
int16_t curpos; DO(getNowPos(id, curpos)); int16_t curcalibrate; DO(getServoCalibration(id, curcalibrate)); int16_t realpos = curpos + curcalibrate; int16_t newcalibrate = getcalibrate(realpos, pos);
ZLOGI(TAG, "reCalibration id:%d curpos:%d curcalibrate:%d realpos:%d newcalibrate:%d", id, curpos, curcalibrate, realpos, newcalibrate); /**
* @brief д���µ�Уֵ */ DO(write_u8(id, kRegServoLockFlag, 0)); DO(write_s16(id, kRegServoCalibration, 11, newcalibrate)); DO(write_u8(id, kRegServoLockFlag, 1)); /**
* @brief ��������Ŀ��λ��Ϊ��ǰ����λ�� */ int16_t nowpos; DO(getNowPos(id, nowpos)); ZLOGI(TAG, "reCalibration id:%d nowpos:%d:%d", id, nowpos, pos); DO(setTargetPos(id, pos)); return true; }
/*******************************************************************************
* BASEFUNC * *******************************************************************************/ bool FeiTeServoMotor::write_u8(uint8_t id, feite::reg_add_e add, uint8_t regval) { return write_reg(id, false, add, ®val, 1); } bool FeiTeServoMotor::read_u8(uint8_t id, feite::reg_add_e add, uint8_t& regval) { return read_reg(id, add, ®val, 1); } bool FeiTeServoMotor::write_u16(uint8_t id, feite::reg_add_e add, uint16_t regval) { return write_reg(id, false, add, (uint8_t*)®val, 2); } bool FeiTeServoMotor::read_u16(uint8_t id, feite::reg_add_e add, uint16_t& regval) { return read_reg(id, add, (uint8_t*)®val, 2); } bool FeiTeServoMotor::async_write_u8(uint8_t id, feite::reg_add_e add, uint8_t regval) { return write_reg(id, true, add, ®val, 1); } bool FeiTeServoMotor::async_write_u16(uint8_t id, feite::reg_add_e add, uint16_t regval) { return write_reg(id, true, add, (uint8_t*)®val, 2); } bool FeiTeServoMotor::async_write_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t regval) { uint16_t val = 0; if (regval >= 0) { val = regval; } else { val = -regval; val |= (1 << signbitoff); } return async_write_u16(id, add, val); }
bool FeiTeServoMotor::read_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t& regval) { uint16_t val = 0; bool ret = read_u16(id, add, val); if (!ret) return false; uint8_t sign = (val >> signbitoff) & 0x01; uint16_t realval = val & (~(1 << signbitoff)); if (sign == 0) { regval = realval; } else { regval = -realval; } return true; } bool FeiTeServoMotor::write_s16(uint8_t id, feite::reg_add_e add, uint8_t signbitoff, int16_t regval) { uint16_t val = 0; if (regval >= 0) { val = regval; } else { val = -regval; val |= (1 << signbitoff); } return write_u16(id, add, val); } bool FeiTeServoMotor::write_reg(uint8_t id, bool async, uint8_t add, uint8_t* data, uint8_t len) { //
ZLOGI(TAG, "write_reg id:%d add:%d len:%d", id, add, len); cmd_header_t* cmd_header = (cmd_header_t*)m_txbuf; receipt_header_t* receipt_header = (receipt_header_t*)m_rxbuf; cmd_header->header = 0xffff; cmd_header->id = id; cmd_header->len = 3 + len; // 3 == cmd + add + checksum
cmd_header->cmd = async ? kasyncWrite : kwrite; cmd_header->data[0] = add; memcpy(&cmd_header->data[1], data, len);
int txpacketlen = sizeof(cmd_header_t) + 1 + len + 1; int rxpacketlen = sizeof(receipt_header_t) + 1;
uint8_t checksum = checksum_packet((uint8_t*)cmd_header, txpacketlen); m_txbuf[txpacketlen - 1] = checksum; if (!tx_and_rx(m_txbuf, txpacketlen, m_rxbuf, rxpacketlen, OVERTIME)) { ZLOGE(TAG, "write_reg fail,overtime"); return false; } if (!(receipt_header->header == 0xffff && receipt_header->id == id)) { ZLOGE(TAG, "write_reg fail,receipt header error"); return false; } return true; } bool FeiTeServoMotor::read_reg(uint8_t id, uint8_t add, uint8_t* data, uint8_t len) { // return false;
cmd_header_t* cmd_header = (cmd_header_t*)m_txbuf; receipt_header_t* receipt_header = (receipt_header_t*)m_rxbuf; cmd_header->header = 0xffff; cmd_header->id = id; cmd_header->len = 3 + 1; // 4 == cmd + add + checksum + readlen
cmd_header->cmd = kread; cmd_header->data[0] = add; cmd_header->data[1] = len;
int txpacketlen = sizeof(cmd_header_t) + 3; int rxpacketlen = sizeof(receipt_header_t) + 1 + len;
uint8_t checksum = checksum_packet((uint8_t*)cmd_header, txpacketlen);
m_txbuf[txpacketlen - 1] = checksum; if (!tx_and_rx(m_txbuf, txpacketlen, m_rxbuf, rxpacketlen, OVERTIME)) { return false; } if (!(receipt_header->header == 0xffff && receipt_header->id == id)) { ZLOGE(TAG, "read_reg fail,receipt header error"); return false; } memcpy(data, receipt_header->data, len); return true; } bool FeiTeServoMotor::tx_and_rx(uint8_t* tx, uint8_t txdatalen, uint8_t* rx, uint8_t expectrxsize, uint16_t overtimems) { uint32_t enter_ticket = HAL_GetTick(); dumphex("tx:", tx, txdatalen);
HAL_UART_Transmit(m_uart, tx, txdatalen, 1000); HAL_UART_Receive_DMA(m_uart, (uint8_t*)rx, expectrxsize);
bool overtime_flag = false; while (HAL_UART_GetState(m_uart) == HAL_UART_STATE_BUSY_RX || //
HAL_UART_GetState(m_uart) == HAL_UART_STATE_BUSY_TX_RX) { osDelay(1); int rxsize = expectrxsize - __HAL_DMA_GET_COUNTER(m_hdma_rx); if (rxsize == expectrxsize) { dumphex("rx:", rx, expectrxsize); break; } if (zos_haspassedms(enter_ticket) > overtimems) { if (expectrxsize != 0 && rxsize != 0) { ZLOGW(TAG, "txandrx overtime rxsize:%d != expect_size:%d", rxsize, expectrxsize); } overtime_flag = true; break; } } HAL_UART_DMAStop(m_uart); if (overtime_flag) { return false; } return true; }
bool FeiTeServoMotor::readversion(uint8_t id, uint8_t& mainversion, uint8_t& subversion, uint8_t& miniserv_mainversion, uint8_t& miniserv_subversion) { uint8_t data = 0; DO(read_u8(id, kRegFirmwareMainVersion, data)); mainversion = data; DO(read_u8(id, kRegFirmwareSubVersion, data)); subversion = data; DO(read_u8(id, kRegServoMainVersion, data)); miniserv_mainversion = data; DO(read_u8(id, kRegServoSubVersion, data)); miniserv_subversion = data; return true; }
uint8_t FeiTeServoMotor::checksum_packet(uint8_t* data, uint8_t len) { return checksum(&data[2], len - 3); } uint8_t FeiTeServoMotor::checksum(uint8_t* data, uint8_t len) { // CheckSum=~(ID+Length+Instruction+Parameter1+...ParameterN
uint16_t sum = 0; for (int i = 0; i < len; i++) { sum += data[i]; } return ~(sum & 0xff); }
|